M-estimation in a Small Business Survey

Authors

  • Grażyna Dehnel Uniwersytet Ekonomiczny w Poznaniu, Katedra Statystyki
  • Elżbieta Gołata Uniwersytet Ekonomiczny w Poznaniu, Katedra Statystyki

DOI:

https://doi.org/10.15678/ZNUEK.2016.0949.0101

Keywords:

robust regression, M-estimation, business statistics, outliers

Abstract

In many business surveys, sample sizes are large enough to compensate for the presence of outliers, which have a relatively small impact on estimates. However, at low levels of aggregation, the impact of outliers might be significant. Therefore, in the case of a population such as the population of enterprises, the classical approach should be accompanied by methods that resist the occurrence of outliers. To deal with this problem, several alternative technique of estimation, less sensitive to outliers, have been proposed in the statistics literature. In this paper we look at one of them – M-estimation, and compare its usefulness in the small businesses survey.

Downloads

Download data is not yet available.

References

Alma Ö.G. [2011], Comparison of Robust Regression Methods in Linear Regression, „International Journal of Contemporary Mathematical Sciences”, vol. 6, nr 9, http://dx.doi.org/10.12988/ijcms. DOI: https://doi.org/10.12988/ijcms

Banaś M., Ligas M. [2014], Empirical Tests of Performance of Some M-estimators, „Geodesy and Cartography”, vol. 63, nr 2, http://dx.doi.org/10.2478/geocart-2014-0015. DOI: https://doi.org/10.2478/geocart-2014-0010

Chen C. [2003], Robust Tools in SAS [w:] Developments in Robust Statistics. International Conference on Robust Statistics, red. R. Dutter i in., Springer Science and Business Media, Berlin–Heidelberg, http://dx.doi.org/10.1007/2F978-3-642-57338-5.

Chen C., Yin G. [2002], Computing the Efficiency and Tuning Constants for M-Estimation, Proceedings of the 2002 Joint Statistical Meetings, American Statistical Association, Alexandria.

Cox B.G., Binder A., Chinnappa N.B., Christianson A., Colledge M.J., Kott P.S. [1995], Business Survey Methods, John Wiley and Sons, Hoboken, NJ, http://dx.doi.org/10.1002/9781118150504.fmatter. DOI: https://doi.org/10.1002/9781118150504.fmatter

Fair R.C. [1974], On the Robust Estimation of Econometric Models, „Annals of Economic and Social Measurement”, vol. 3.

Hampel F.R., Ronchetti E.M., Rousseeuw P.J., Stahel W.A. [2011], Robust Statistics: The Approach Based on Influence Functions, John Wiley and Sons, Hoboken, NJ, http://dx.doi.org/10.1002/9781118186435.fmatter. DOI: https://doi.org/10.1002/9781118186435.fmatter

Holland P., Welsch R. [1977], Robust Regression Using Iteratively Reweighted Least-Squares, „Communications in Statistics – Theory and Methods”, vol. 6, http://dx.doi.org/10.1080/03610927708827533. DOI: https://doi.org/10.1080/03610927708827533

Huber P.J. [1964], Robust Estimation of a Location Parameter, „Annals of Mathematical Statistics”, vol. 35. DOI: https://doi.org/10.1214/aoms/1177703732

Huber P.J. [1981], Robust Statistics, John Wiley and Sons, New York.

Renaud O., Victoria-Feser M. [2010], A Robust Coefficient of Determination for Regression, „Journal of Statistical Planning and Inference”, vol. 140, nr 7, http://dx.doi.org/10.1016/j.jspi.2010.01.008. DOI: https://doi.org/10.1016/j.jspi.2010.01.008

Rousseeuw P.J., Leroy A.M. [1987], Robust Regression and Outlier Detection, Wiley-Interscience, New York.

Trzpiot G. [2013], Wybrane statystyki odporne, „Studia Ekonomiczne”, nr 152.

User’s Guide. The Robustreg Procedure [2014], SAS Institute, Cary, NC.

Downloads

Published

01-06-2016

Issue

Section

Articles

How to Cite

Dehnel, G., & Gołata, E. (2016). M-estimation in a Small Business Survey. Krakow Review of Economics and Management Zeszyty Naukowe Uniwersytetu Ekonomicznego W Krakowie, 1(949), 5-21. https://doi.org/10.15678/ZNUEK.2016.0949.0101