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A B S T R A C T

Objective: The aim of this paper is to present bootstrap algorithms for measuring the accuracy 
of estimation and prediction in design-based and model-based approaches in survey sampling 
and small area estimation. Three proposals of prediction-mean squared error estimators are also 
examined.
Research Design & Methods: Various bootstrap procedures are shown and used to estimate 
the design- and prediction-mean squared errors based on real data. Computations are supported 
by two R packages.
Findings: Three prediction-mean squared error estimators are proposed.
Implications / Recommendations: The bootstrap algorithms used in the design-based approach 
give similar results for the considered data for the variance estimates of the considered estimator, 
implying that the speed of the algorithms may be important for practitioners in cases of similar 
properties. The proposed estimators of the prediction mean squared error produce higher 
estimates than other estimators in the model-based approach, indicating a positive bias that can 
be interpreted as a pessimistic accuracy estimate.
Contribution: All the presented bootstrap algorithms are easily applicable using two R packages 
available at R CRAN and GitHub. Three double bootstrap prediction-MSE estimators are 
proposed and analysed in the real-data application.
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1. Introduction
In survey sampling, two main approaches are considered – the classic design- 

-based approach usually used to estimate the population parameters and the model- 
-based approach typically used to predict subpopulation characteristics. In both 
approaches, accuracy estimation is among the crucial problems. Many estimators 
of accuracy measures are based on the various bootstrap algorithms discussed in 
this paper.

In the design-based approach, the inference is based on a random sample 
denoted by s. The variable of interest, typically denoted by y, is treated as fixed 
(non-random). Let P, called the sampling space, be the set of all sample sets s. 
The sampling design is defined as the probability distribution P s^ h defined on the 
sampling space P, such that ≥P s 0^ h  and P s 1Ps =d ^ h/  for all Psd . As pointed 
out by Cassel, Särndal and Wretman (1977, p. 19), the data obtained based on 
a sample s and the associated observations of y’s can be written as , : .d k y k sk d= ^^ h h  
In the design-based approach, d is treated as the realisation of , : ,D y k Sk k d= ^^ h h  
where S is a random variable whose realisations are possible samples drawn from the 
population. The statistic, denoted by Z Du= ^ h, is a function defined on the sample 
space of the random variable D, such that it depends on the variable of interest only 
through yk for which k sd  (Cassel, Särndal & Wretman, 1977, p. 20). The estimator 
of the parameter θ is a statistic θt  with values which belong to the parameter space. 
Hence, the sampling design is usually assumed to be the only source of the estima-
tor’s randomness. Before proceeding, it is necessary to define the inclusion proba-
bility of order r, denoted by .…k kr1π  It was defined by Cassel, Särndal and Wretman 
(1977, p. 11) as the probability that population elements , ,…,k k kr1 2  are included in 
the sample: P s…k k s k kA… r r1 1

=π d ^^ hh/  where : , , , .A k k s k s i r1… for …r i1 d= =^ h " ,  
Hence, the first order inclusion probability of an element k is the sum of probabil-
ities of selecting those samples s that contain the element. Therefore, its inverse 
can be interpreted as the number of population elements represented by the sample 
element k. The measure of the design-based accuracy is the design-MSE (mean 
squared error) defined as (Cassel, Särndal & Wretman, 1977, p. 26):

 ,MSE E Var B–p p p p
2 2θ θ θ θθ= = +t t t t^ ^ ^ ^h h h h  (1)
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where θ is a parameter, θt  is an estimator, .Ep^ h is the expectation with respect to 
the sampling design, Var E E–p p p

2
θ θ θ=t t t^ a ^h hk  is the measure of the design- 

-precision and is called the design-variance, and EB –p pθ θ θ=t t^ ^h h  is the design-bias.
In the model-based approach, the inference can be made based on both random 

and purposive samples. It is assumed that the observed vector of the variable of 
interest is the realisation of a certain vector of random variables , ,…,Y Y Y YN T

1 2= 6 @  
with some joint distribution denoted by ζ. The superpopulation model is the set of 
conditions that define the class of distributions to which distribution ζ is assumed to 
belong. In this approach (Cassel, Särndal & Wretman, 1977, p. 91), the observed data 

, :d k y k sk d= ^^ h h are treated as the realisation of , :k k sD Yk d=l ^^ h h. What is more, 
the statistic denoted by Z u D= l^ h is a function, that for any given sample s depends 
on , ,…,Y Y YN1 2  only through those Yk such that k sd  (Cassel, Särndal & Wretman, 
1977, p. 91). If a statistic θt  is used to predict θ, which is a function of , , ,Y Y Y… N1 2 , 
it is called a predictor of θ (Cassel, Särndal & Wretman, 1977, p. 91). Because values 
of the variable of interest are assumed to be realisations of the random variables, the 
predicted characteristic Yθ θ= ^ h is random as well. Finally, it is commonly assumed 
that the distribution of the variable of interest is the only source of a predictor’s 
randomness.

Some basic notations are introduced to present the linear mixed model, which 
is widely used in survey sampling. The population Ω of size N is divided into two 
sets: the sample s of size n and the set of non-sampled elements Ωr = Ω \ s of size 
N N n–r = . The values of the variable of interest , ,…,y yy N1 2  are assumed to be 
realisations of random variables , ,…,Y YY N1 2 . The population vector of size N of the 
random variables is denoted by Y. There are also two known population matrices 
of auxiliary variables of sizes N p#  and N q# , denoted by X and Z and associated 
with fixed and random effects, respectively.

Rao and Molina (2015, p. 98) assume that the population data obey the following 
linear mixed model (LMM) assumptions:
 Y = Xβ + Zv + e, (2)

where v N+  (0, G (δ)) and e N+  (0, R (δ)) are called vectors of random effects and 
random components, and are assumed to be independent. The vector of unknown 
parameters of the LMM is denoted by Ψ = [βT  δT]T, where β and δ are vectors of 
fixed effects and variance components, respectively.

Without loss of generality, we assume that only first n realisations of Yi are 
observed in the sample, and thus, we can decompose Y as follows: ,Y Y Ys

T
r
T T= 6 @  

where Ys and Yr are of sizes n 1#  and N 1r# , respectively. In all notations, the subscript 
“s” is used for the sample and “r” for non-sampled elements. Similarly to the decom-
position of the Y vector, matrices of auxiliary information in (2) can be decomposed 
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as follows: X X Xs
T

r
T T= 6 @  and Z Z Zs

T
r
T T= 6 @ . Matrices R (δ) and G (δ) are variance- 

-covariance matrices of random vectors e and v, respectively. The variance-covariance 
matrix of the dependent variable is denoted by YVar =^ h  V (δ) = ZG (δ) ZT  + R (δ). 

V and R can be decomposed as follows: ,V
V
V

V
V

ss

rs

sr

rr
= ; E  ,R

R
R
RR ss

rs

sr

rr
= ; E  where 

, , , , ,V Y V Y V Y Y V Y YVar Var Cov Covss s rr r sr s r rs r s= = = =^ ^ ^ ^h h h h and similarly Rss =
, , , , ,e R e e R e ee RVar Var Cov Covs s sr r rsr srr r= = = =^ ^ ^ ^h h h h.

The prediction-MSE (mean squared error) is a measure of prediction accuracy, 
defined as follows (Rao & Molina, 2015, p. 98):

 ,MSE E Var B– –2 2θ θ θ θ θ θ= = +ζ ζ ζ ζ
t t t t^ ^ ^ ^h h h h  (3)

where θ is a predicted random characteristic, θt  is a predictor, .Eζ^ h is the expec-
tation with respect to the ζ distribution, Var E E– –– 2θ θ θ θθ= ζζ ζ

t t t^ ^ ^h hh  is the 
measure of the prediction-precision known as the prediction-variance, B θ =ζ

t^ h  
E –θ θ= ζ
t^ h is the prediction-bias.

In this paper we present bootstrap algorithms for estimating the accuracy and 
precision of any estimator and predictor in both approaches. In sections 2 and 3, 
two bootstrap approaches in the design-based inference are studied. Different boot-
strap approaches used in the model-based inference are introduced in sections 4, 5, 
and 6, including our new proposals of three prediction-MSE estimators based on 
the double bootstrap. In sections 7 and 8, real data applications are presented using 
two R packages: pipsboot (Kucharski & Żądło, 2021) and qape (Wolny-Dominiak 
& Żądło, 2022b).

2. The ad-hoc Approach in Design-based Inference
The classic Efron’s bootstrap (Efron, 1979) procedure, where simple random 

samples are drawn with replacement from the original sample, is correct under the 
independence of random variables. In the case of complex sampling designs, appro-
priate modifications are required.

Let S*
k be a number of replications of element k in the bootstrap sample. In the 

case of methods based on the ad-hoc approach, whether the following equalities 
hold for the proposed method (Antal & Tillé, 2014, p. 1349) is usually checked:

 ,,E S k S1* *
k d=^ h  (4)

 ,,Var S k S1–* *
k k dπ=^ h  (5)

 ., ,Cov S S k l S– ≠* * *
k l kl k l kl

1– dπ π π π=^ ^h h  (6)

If these equality conditions are met for a bootstrap method, the bootstrap variance 
estimator of the Horvitz-Thompson estimator is equal to the unbiased classic vari-
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ance estimator proposed by Horvitz and Thompson (1952). A modification of (5) 
and (6) can also be considered (Antal & Tillé, 2014, p. 1349) to ensure that the 
bootstrap variance estimator of the Horvitz-Thompson estimator is equal to the 
unbiased SYG variance estimator proposed by Sen (1953) and Yates and Grundy 
(1953). Usually, only the first two conditions (4) and (5) are considered because it 
is difficult to meet (6) exactly for fixed sampling designs with unequal inclusion 
probabilities, as stated by Antal and Tillé (2014, p. 1349). It should also be noted that 
meeting these conditions ensures unbiasedness of the bootstrap variance estimator 
of the Horvitz-Thompson estimator. However, if they are not met it does not imply 
that the bootstrap variance estimator of the Horvitz-Thompson estimator is less 
accurate than any other (including classic) variance estimator. Furthermore, these 
conditions are defined for the Horvitz-Thompson estimator, whereas in practice, 
other estimators can also be used (for example, those that use auxiliary information).

According to Ranalli and Mecatti (2012), the majority of bootstrap methods for 
complex sampling designs can be classified into one of two approaches. The first, 
the ad-hoc approach, is usually based on iid resampling and rescaling sample data. 
Methods using this approach include the rescaling bootstrap (Rao & Wu, 1988), 
the mirror-match bootstrap (Sitter, 1992), and the generalised weighted bootstrap 
(Beaumont & Patak, 2012). Proposals presented by Antal and Tillé (2011, 2014) are 
also considered within this approach.

One of these algorithms is presented below in detail as an example of the ad-hoc 
approach. The authors mix several sampling designs for resampling to meet two 
conditions: (4) and (5).

Algorithm 1. The bootstrap algorithm proposed by Antal and Tillé (2014, 
pp. 1355–1356) for the proportional-to-size sampling is presented below. Let func-
tion .; .H^ h be a function used to compute first order inclusion probabilities for the 
original sampling design, i.e., ., , , ;H x x x n…k N1 2π = ^ h

1. Selecting the initial bootstrap sample. Use the Poisson sampling design with 
original inclusion probabilities πk to choose units from S, where X k Sk d^ h will 
denote the initial sample membership indicator. The units selected once form the 
initial bootstrap sample: S X*

k k= . Let ,m Xkk S= d
/  and hence, .E mp kk S π= d^ h /

2. Completing the bootstrap sample.
a) If ≥n m 2– , the double half sampling design is used among units such that 

X 0k =  to draw n – m elements. If n – m is even, the procedure of the double half 
sampling design is defined as a sampling of . n m0 5 –^ h elements with simple 
random sampling without replacement, and then, each selected unit is taken twice. 
If n – m is odd, the double half sampling design is slightly modified, as described by 
Antal and Tillé (2014, pp. 1351–1352).
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b) If n – m = 1, the S*
k is redefined as follows:

– with 0.5 probability: S*
k = 1 for k Sd , i.e., the bootstrap sample is defined as 

the original sample,
– with 0.5 probability:

compute .E X m n 1 1 1 1– – – –k n k k k l ll S1
1 1 1

–
– – –π π π π π= = = da ^ ^ ^k h h h/  Then, using 

an unequal inclusion probabilities sampling design with a fixed sample size, draw 
n – 2 elements from S with probabilities , ;H k S1 1 2– –k k k n 1– dψ π= ^ h and take 
them to the bootstrap sample once. Finally, draw a double half sample from the two 
remaining units.

Bootstrap estimators of the design-variance and the design-bias are defined as 
follows (e.g., Rao & Wu, 1988):

 ,Var B B1
1 1
– – **

bp
boot

b
b

B

b

B

11

2
θ θθ =

==
t t t^ ch m\ //  (7)

 ,BB 1 –*p
boot

b
b

B

1
θ θ θ=

=
t t t^ hW /  (8)

where θt  is the value of the considered estimator computed based on the original 
sample and *

bθt  is the value of the estimator computed for the bootstrap sample 
obtained in the bth iteration.

3. Plug-in Approach in Design-based Inference
The second approach is the plug-in approach. It is based on the concept of 

a pseudopopulation, though the pseudopopulation is not physically generated in 
some methods.

Algorithm 2. The general algorithm of typical bootstrap procedures for complex 
sampling designs based on the plug-in approach is as follows (compare Barbiero & 
Mecatti, 2010):

1. Define (possibly non-integer) weights wk that determine how many population 
elements are represented by a given sample element.

2. If weights w k Sk d^ h are not integers, replace them by integers denoted by wku .
3. Build a pseudopopulation , , , , ,k N1 2 … …* * pseudoΩ = " , by replicating the orig-

inal sample elements wku -times k Sd^ h each.
4. Draw a bootstrap sample S* of size n (the original sample size) from Ω* 

mimicking the original sampling design.
5. Compute the value of an estimator θt on bootstrap sample s*. Denote it by *θt .
6. Steps 4 and 5 are iterated B times, which gives *

bθt  for b = 1, 2, …, B.
Many bootstrap algorithms can be described using Algorithm 2 with various 

definitions of wk and wku . Holmberg (1988) defines integer weights as follows: wk = 
e ,w where is rounded down value ofk k k k k

1 1 1– – –π π π= = +u 6 6@ @  and ek  is generated once 
from Bernoulli distribution with probability .–k k

1 1– –π π6 @  Barbiero and Mecatti (2010) 
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propose the 0.5 bootstrap with wk k
1–= π  and wku  defined as wk rounded to the nearest 

integer. Barbiero, Manzi and Mecatti (2015) present a similar proposal, but wk are 
calibration weights (see e.g. Deville & Särndal, 1992) and wku  are defined as wk 
rounded to the nearest integer. Barbiero and Mecatti’s (2010) two proposals for 
an x-balanced bootstrap are slightly different. The numbers of replications w wk k= u  
are rounded-down inverses of first order inclusion probabilities, to which additional 
pseudoelements are added to achieve the minimum absolute difference between 
total values of an auxiliary variable in the real population and the pseudopopulation.

Żądło (2021) proposed a fast procedure – a generalisation of the bootstrap algo-
rithm presented by Quatember (2014) for probability proportional-to-size sampling, 
inspired by the plug-in approach. Here, though, the pseudopopulation is not physi-
cally constructed. The fact that the pseudo-population does not have to be created is 
crucial for the calculation time in this iterative algorithm. The proposed procedure 
is a draw-by-draw algorithm. In the bth bootstrap sample , ,…,b B1 2=^ h element k 
is drawn from the original sample in the jth draw , ,…,j n1 2=^ h with probability:

 ,w h x t x– –,k k j k x i
i s

1
1

–
–

,b j 1–

#
d

^ ch m/  (9)

where wk’s are some calibration weights such that w x xi ii s ii=d dΩ/ /  (see Deville 
& Särndal, 1992), h ,k j 1–  is the number of replications of element k selected in the 
bootstrap procedure in the first j – 1 draws, and s ,b j 1–  is the subset of the bth boot-
strap sample after draw j – 1.

4. Parametric Bootstrap in Model-based Inference
In the two preceding sections we have presented bootstrap algorithms for 

the design-based inference. In this and subsequent sections, the model-based 
inference is analysed. Let us consider the problem of predicting a function of the 
population vector Y denoted by Yθ θ= ^ h using a predictor Ysθ θ=t t ^ h, as well as the 
estimating its prediction accuracy.

Algorithm 3. The parametric bootstrap algorithm for the linear mixed model, 
presented by Butar and Lahiri (2003, p. 67) and Rao and Molina (2015, pp. 183–186), 
is as follows: 

1. Based on n sample observations, estimate a vector of model parameters Ψ 
and obtain its estimate Ψt .

2. Generate B realisations y*
i
b^ h (where b = 1, 2, …, B) of Yi, under model (2), 

where parameters Ψ are replaced by Ψt , to obtain a bootstrap realisation of the popu- 
lation vector Y denoted by ,y y y y… …* * * *b b

i
b

N
b T

1=^ ^ ^ ^h h h h6 @  where i = 1, 2, …, N and 
b = 1, 2, …, B.

3. Decompose vectors y* b^ h, where b = 1, 2, …, B, as follows .y y* *b b TT
s r

T^ ^h h6 @
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4. FOR b = 1, 2, …, B DO

a) Compute the bootstrap realisation of the characteristic of interest θ denoted by 
, .y* * *b b bθ θ Ψ= t^^ ^ ^ hh h h

b) Estimate Ψ based on generated data y* b
s
^ h to obtain * bΨt ^ h.

c) Compute the bootstrap realisation of θt denoted by ,y* * *b
s
b bθ Ψt ta^ ^ ^ kh h h  based on (2), 

where Ψ is replaced with * bΨt ^ h.
d) Compute bootstrap realisations of prediction error U* denoted by u* and for 

the bth iteration given by:

 , , .y yu – –* * * * * * * *b b
s
b b b b b bθ θ θ θΨ Ψ= =t t t ta a^ ^ ^ ^ ^ ^ ^ ^k kh h h h h h h h  (10)

ENDFOR.
5. Estimate the prediction mean squared error:

 .uMSE B * bparametric

b

B
1

1

– 2
θ =

=
t^ ^h h\ /  (11)

If the model assumptions are met, the bootstrap estimator (11) has good properties 
compared with other MSE estimators (e.g., Krzciuk, 2018).

5. Residual Bootstrap in Model-based Inference
Before the introduction of the algorithm, we introduce the correction procedure 

of predicted random effects and random components. The correction procedure 
aims to avoid the problem of the underdispersed bootstrap distributions of param-
eter estimates and downwardly biased variance parameter estimates (Carpenter, 
Goldstein & Rasbash, 2003, p. 435). 

Without losing the generality, we can rewrite model (2) as follows:
 Y = Xβ + Z1v1 + … + Zlvl + … + ZLvL + e, (12)

where v1, …, vl, …, vL are independent vectors for different divisions of Y vector,

 v v v v… …l l
T

lk
T

lK
T T

1 l= 6 @  (13)

is of size K J 1l l# , where vlk is J 1l#  for all k = 1, …, Kl and Kl is the number of 
random effects at l th level of grouping, Zl is of size N K Jl l# .

Firstly, the correction procedure of random components is presented based 
on Chambers and Chandra (2013, p. 455). It is assumed that e RVar = =^ h  

diag ae i N i
2

1≤ ≤σ= ^ h with known weights ai. The corrected estimates of random 
components are defined as follows:

 ,e a e n e
.

cor i e i i i
k

n
1

1

0 5
–

–
σ=

=
t t t tc^ mh /  (14)

where i = 1, 2, …, n, e
2σt  is an estimate (e.g., REML estimate) of e

2σ  and eit  are esti-
mated random components computed under model (2).
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Secondly, the random effects’ correction procedure based on Thai et al. (2013, 
p. 132) and Carpenter, Goldstein and Rasbash (2003, pp. 435–436) is introduced. 
We consider vector (13) and its covariance matrix of size K Kl l#  defined as  
R Var v v v… …l l j lkj lK j

T
1 l= ^ h6 @ , where vlkj is the jth element of vlk. The esti-

mated matrix Rl, obtained by replacing unknown variance components with 
their (e.g. Restricted Maximum Likelihood) estimates is denoted by Rl

t , while the 

empirical covariance matrix is given by R ,

v

v

v

v

v

v

Jemp l l

l
T

lk
T

lK
T

l
T

lk
T

lK
T

T

1

1 1

–

l l

g

g

g

g

=

t

t

t

t

t

t

^ h

R

T

S
S
S
S
S
SS

R

T

S
S
S
S
S
SS

V

X

W
W
W
W
W
WW

V

X

W
W
W
W
W
WW

 where vlkt  are esti-

mated

 

best linear unbiased predictors of vlk. Using Cholesky decomposition, these 
covariance matrices can be written as R L Ll est l est l

T=t ^ ^h h  and R L L( )l emp l emp l
T

emp = ^ ^h h . 
Let A L Ll est l emp l

T1–= a ^ ^ kh h ; the corrected version of the estimated best linear unbiased 
predictor vlt  is then defined as:
 .v v Acor l l l=t t^ h  (15)

To introduce the algorithm, srswr (A, m) can be defined as the outcome of taking 
a random sample with replacement of size m of rows of matrix A. In the special 
case, when A is a vector, srswr (A, m) is a simple random sample with size m of 
elements of the vector replaced.

Algorithm 4. The residual bootstrap algorithm (with the correction procedure 
to avoid the problem of the underdispersed bootstrap distributions) presented 
by Carpenter, Goldstein and Rasbash (2003, pp. 435–436), Chambers and Chandra 
(2013, p. 455) and Thai et al. (2013, p. 132) for the LMM is given by Algorithm 3 
of the parametric bootstrap, where step 2 is replaced by:

2. Generate B population vectors of the variable of interest, denoted by y* b^ h as:

 y X* b =^ h β ˆ    ,Z v Z v Z v e… …* * * *b
l

b
L

b b
l L1 1 + + + + ++ ^ ^ ^ ^h h h h  (16)

where β ̂   is an estimator (e.g. REML estimator) of β, e* b^ h is a vector of size 
N 1#  defined as ,srswr col e N≤ ≤i n icor1 t^ ^ hh  with e cor it̂ h  given by (14), and v * b

l
^ h 

(for 1, 2, …, L) is a vector of size K J 1l l#  built from columns of the matrix: 
vsrswr cor l1ft^ ^ h6  ,v v Jcor lk cor lK llft t^ ^ hh h @  of size J Kl l#  with v cor lt ^ h  given by (15).

Then, the prediction-MSE estimator has the same form it has in the parametric 
bootstrap – given by (11).

6. Double Bootstrap in Model-based Inference
The double bootstrap algorithm can be used to obtain bias-corrected MSE esti-

mators. In this procedure, the parametric bootstrap procedure is used in both levels 
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of the double bootstrap. The first-level bootstrap prediction errors given by (10) are 
obtained as the result of the first level. The second level of the bootstrap is then 
performed within the first level bootstrap loop, as described below in Algorithm 5.

Algorithm 5. Algorithm 3 of the parametric bootstrap provides the first level of 
the double-bootstrap procedure. According to Hall and Maiti (2006) and Erciulescu 
and Fuller (2014), in the 4th step of Algorithm 3 we add the following point e) to 
obtain the double-bootstrap algorithm. For the bth iteration of the first level, we add 
the following second-level bootstrap loop:

e) FOR c = 1, 2, …, C DO

– Under model (2), where parameters Ψ are replaced by first level estimates ,* bΨt ^ h  
generate second-level realisations of Yi denoted by y** ,

i
b c^ h, where i = 1, 2, …, N 

to obtain … … ,y y y y** , ** , ** , ** ,b c b c
i
b c

N
b c T

1=^ ^ ^ ^h h h h6 @  which is decomposed as follows: 
y y y** , ** , ** ,b c

s
b c T

r
b c T T=^ ^ ^h h h6 @ .

– Compute the second-level bootstrap realisation of θ denoted by ** ,b cθ =^ h  
,y** , ** , *b c b c bθ Ψ= t^^ ^ ^ hh h h .

– Use y** ,
s
b c^ h to obtain the vector of estimates ** ,b cΨt ^ h, and compute second- 

-level bootstrap realisation of θt, denoted by ,y** , ** , ** ,b c
s
b c b cθ Ψt t^^ ^ ^ hh h h .

– Compute the second-level bootstrap realisation of the prediction error given by:

 , ,
.

y y
u

–
–

** , ** , ** , ** , ** , *

** , ** ,

b c
s
b c b c b c b c b

b c b c

** ,b c

θ θ

θ θ

Ψ Ψ

=
= =

=

t t t

t

^ a^ ^ ^

^ ^

^ ^ ^

^

h kh h h

h h

h h h

h

 (17)

ENDFOR.
Furthermore, in step 5 of Algorithm 3, we introduce additional MSE estimators. 
The first one is the classic bias-corrected double bootstrap MSE estimator (Erciu-
lescu & Fuller, 2014, p. 12):

 ,MSE MSE MSE B u2 – **db B pboot db lev b

b

B2 2 1
1

1

– – –θ = =
=

t u^ ^h h\ \ \ /  (18)
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and u* b^ h and u** ,b c^ h are given by (10) and (17), respectively. The special case of (18) 
for C = 1 is as follows:

 ,MSE B u**db b

b

B
1

1

1
2

– –θ =
=

t u^ ^h h\ /  (20)

where
 .u u u2 –** * ** ,b b b c

2
2 2

=u ^ ^ ^h h h  (21)
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The following MSE estimator, called the telescoping bootstrap MSE estimator, 
is a modification of (20) (Erciulescu & Fuller, 2014, p. 12):

 ,MSE B u**db b

b

Btelesc 1

1
3

– –θ =
=

t u^ ^h h\ /  (22)

where
 .u u u u–** * * ** ,b b b b c

3
12 2 2

= + +u ^ ^ ^ ^h h h h  (23)

It should be noted that one additional iteration of the first-level bootstrap should be 
performed using (22) in comparison to (20). 

Because simulation studies showed that the properties of the above double boot-
strap MSE estimators can suffer due to high bias corrections, leading even to the 
negative values of the MSE estimators, modifications were proposed. Hall and Maiti 
(2006, p. 228) provided the first:
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 (24)

Erciulescu and Fuller (2014, p. 3311) provided the second:
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where the authors’ proposal is to set q = 0.77 and C = 1. The third modification, 
itself a modification of (22), can be written as follows (Erciulescu & Fuller, 2014, 
p. 3312): 
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where the authors’ proposal is to set q = 0.77 and C = 1.
Estimators (24), (25) and (26) are modifications of (18), (20) and (22), proposed 

to avoid negative MSE estimates. We propose to solve this problem differently: not 
by correcting the final results, but by correcting potentially negative elements ,u** b1u

^ h  
u** b2u
^ h and u** b3u

^ h, given by (19), (21) and (23), functioning as squared predictions 
errors. Here we define the following modifications of (19), (21) and (23) to avoid 
possible negative values:
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This leads to the following proposals of modifications of (18), (20) and (22):
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where u**
modh
bu ^ h, h = 1, 2, 3 are given by (27) for h = 1, 2, 3.

7. Applications – Part 1
We consider a real dataset from Särndal, Swensson and Wretman (1992) on 281 

Swedish municipalities, which is available in the sampling R package (Tillé & Matei, 
2021). The variable of interest is the revenue from municipal taxation in millions of 
kronor in 1985 (denoted by RMT85). The auxiliary variable is the population in 
1975 in thousands of people (denoted by P75). It is used in this section to compute 
first-order inclusion probabilities for probability-proportional-to-size sampling using 
the Brewer sampling scheme (e.g., Tillé, 2006, p. 114). The estimation of the popu-
lation total is considered, but the estimation of the design-accuracy of other popula-
tion parameters, as presented by e.g., Antal and Tillé (2014) and Stachurski (2018), 
can also be analysed. Using the sampling scheme mentioned above, one sample of 
a size equal to of the population size N = 281 is drawn. The value of the Horvitz- 
-Thompson (HT) estimator of the population total of municipal taxation revenues is 
computed based on the sample (53,861.61 Swedish kronor).

We estimate the design-standard error using various bootstrap algorithms avail-
able in pipsboot R package (Kucharski & Żądło, 2021). The number of iterations 
set for a bootstrap algorithm should be high enough to ensure stable results – some 
proposals have been put forward by Chwila and Żądło (2020). We use 1,000 itera-
tions. The following algorithms are considered:

– BM0.5 – Barbiero and Mecatti (2010) 0.5 bootstrap,
– AT2011 – Antal and Tillé (2011) direct bootstrap,
– AT2014 – Antal and Tillé (2014) direct bootstrap,
– BMM – Barbiero, Manzi and Mecatti (2015) bootstrap,
– H – Holmberg (1988) bootstrap,
– Z – Żądło (2021) bootstrap,
– Q – Quatember (2014) bootstrap,
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– SP – Sverchkov and Pfeffermann (2004) bootstrap,
– BMxb1 – Barbiero and Mecatti (2010) x-balanced 1 bootstrap,
– BMxb2 – Barbiero and Mecatti (2010) x-balanced 2 bootstrap.

Table 1. The Estimated Design-precision of the HT Estimator of the Population Total

Bootstrap Estimated
Design-standard Error

Estimated Relative
Design-standard Error 

(in %)

Execution Time
of 1,000 Iterations

(in sec.)
BM0.5 1,338.6 2.49 0.019
AT2011 1,347.8 2.50 0.018
AT2014 1,352.4 2.51 0.001
BMM 1,294.4 2.40 0.052
H 1,327.7 2.47 0.050
Z 1,340.0 2.49 0.007
Q 1,380.2 2.56 0.001
SP 1,357.8 2.52 0.033
BMxb1 1,331.8 2.47 0.018
BMxb2 1,370.1 2.54 0.019

Source: the author’s own computations using pipsboot R package (Kucharski & Żądło, 2021).

The estimated relative design-standard errors presented in Table 1 are similar 
to each other. This suggests that they have similar stochastic properties, though 
that should be confirmed in the simulation studies. In such a case, the time- 
-consuming algorithms can be of lower interest, especially for large populations, 
where bootstrap algorithms based on the plug-in approach require the physical 
creation of a pseudo-population. Therefore, faster algorithms including Żądło (2021) 
may be preferable.

8. Applications – Part 2
In this section we use the same dataset as in the previous one. In this case, the 

inference is based on a single stratified sample of a size 20% of the population 
size (N = 281) to have enough sample observations to estimate all model param-
eters. The population total is predicted under the special case of model (2), where 
RMT85 logarithms are explained by P75 logarithms (the variables are described 
in the previous section). This model is the nested error linear mixed model 
with subpopulation-specific random effects, with subpopulations defined as regions 
(e.g., Żądło, 2015, p. 43). The model parameters are significant at a 0.05 significance 
level (the results are based on permutation tests). These tests are known to have 
good properties both for testing fixed effects (Krzciuk & Żądło, 2014a) and random 
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components (Krzciuk & Żądło, 2014b). What is more, there is no evidence to reject 
the null hypothesis on the normality of random effect and random components 
(the test procedure proposed by Jacqmin-Gadda et al. (2007) has been conducted).

The plug-in predictor is used here to predict the population total under the model 
being considered (see e.g., Chwila & Żądło, 2022, p. 20). However, its potential 
application is greater – it allows one to predict any given function of the popula-
tion vector of the variable of interest, such as quantiles and distribution functions 
(e.g., Stachurski, 2021). Based on the sample under consideration, the value of 
the predictor of the population total of municipal taxation revenues is computed 
(it comes out to 54,022.03 Swedish kronor). Although we consider the use of boot-
strap for linear mixed models, it also has successful applications for more general 
models, as shown e.g., by Wolny-Dominiak (2017) and Wolny-Dominiak and Żądło 
(2022a).

To estimate the prediction-accuracy, we use different bootstrap algorithms avail-
able in qape R package (Wolny-Dominiak & Żądło, 2022b). The assumed number 
of iterations is 1,000 for parametric, residual, and the first level of the double boot-
strap, and 500 for the second level of the double bootstrap.

In sections 4, 5 and 6, various bootstrap MSE estimators were presented. 
The superscripts used in their notations are used as the names of bootstrap algo-
rithms in Table 2, along with the appropriate equation numbers.

Table 2. Estimated Prediction Accuracy of the Plug-in Predictor of the Population Total

Bootstrap Estimated 
Prediction-RMSE

Estimated Relative
Prediction-RMSE

(in %)

Execution Time a

(in sec.)

Parametric – equation (11) 725.5 1.35 23.17
Residual – as in Algorithm 4 716.8 1.34 36.01
db-B2 – equation (18) 651.6 1.22

11,516 b

db-B2-mod – equation (28) 811.8 1.51
db-B2-HM – equation (24) 655.3 1.22
db-1 – equation (20) 633.9 1.18
db-1-mod – equation (29) 854.1 1.60
db-1-EF – equation (25) 633.9 1.18
db-telesc – equation (22) 634.1 1.18
db-telesc-mod – equation (30) 830.8 1.55
db-telesc-EF – equation (22) 634.1 1.18

a Of 1,000 iterations for parametric, residual, and the first level of the double bootstrap, and 500 for 
the second level of the double bootstrap (parallel computing is used). b The time of the execution of 
doubleBootFuture{qape}function which computes all double bootstrap MSE estimators.
Source: the author’s own computations using qape R package (Wolny-Dominiak & Żądło, 2022b).
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Firstly, the results of db-1 and its modified version db-1-EF MSE estimators are 
identical, as are the results of db-telesc and its modified version db-telesc-EF. This 
means that the conditions implying possible corrections in (25) and (26) have not 
been met. Secondly, the results of the parametric and residual MSE estimators are as 
follows. The first one is based on the normality assumptions of random effects and 
random components, while the second is not. However, the normality assumption 
is met, and the results are comparable. Thirdly, the results of all double bootstrap 
estimators (except our proposals) are similar and smaller than the value of the para-
metric bootstrap estimators, since they are bias-corrected versions of the parametric 
bootstrap estimator. Finally, the values of our proposals given by (28), (29), and 
(30) are higher than the rest of the results, which may indicate that they are posi-
tively biased. Even if they overestimate the prediction MSE on average, they may be 
useful proposals because they provide pessimistic estimates of prediction accuracy. 
However, further Monte Carlo simulation analyses in this area should be conducted.

9. Conclusion
We have presented a variety of bootstrap algorithms used in survey sampling 

to estimate design- and prediction-accuracy. I use their computer implementations, 
available as two R packages on R CRAN and GitHub. Three double bootstrap MSE 
estimators are proposed and analysed in the application of the real data. Most of the 
application results within each approach are similar, suggesting that the stochastic 
properties of variance and MSE estimators are similar. However, they cannot be 
generalised for other population datasets directly, though the R packages pipsboot 
and qape make it easy to use these methods for any dataset. Further research should 
include Monte Carlo simulation studies, in which the biases and accuracies of vari-
ance and MSE estimators should be analysed. What is more, design-based consid-
erations can be extended to other sampling designs, and the model-based results to 
other models, including the problem of model misspecification. The analyses could 
also be extended to consider the estimation and prediction of other characteristics 
than population total.
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