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Abstract

Objective: The permutation model in hypothesis testing was introduced by  
R. A. Fisher in 1925. These methods permit us to test hypotheses with as minimal 
assumptions as possible. The tests require high computing power and therefore 
have found greater application in recent years. However, the concept of permutation 
methods is much wider than the issue of permutation testing. In 1923 J. Spława-Neyman 
introduced a permutation model for the analysis of field experiments. The purpose of 
the article is to present the possibilities of applying permutation methods in the analysis 
of dependencies. The article presents selected possibilities of data rearranging in 
dependency analysis.

Research Design & Methods: The study considered the analysis of multivariate data. 
The paper presents theoretical considerations and refers to the Monte Carlo simulation.

Findings: A proposed method to allow investigation of the significance of the 
relationship between two data sets is presented. The considerations are supplemented 
by comparing the size and power of the proposed test with tests known from canonical 
correlation analysis.

Implications/Recommendations: The proposal is most powerful for non-normally 
distributed variables and small samples.

Contribution: The proposed test can be used in the analysis of multidimensional 
economic and social phenomena.
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1. Introduction

The permutation model in hypothesis testing was introduced by  
R. A. Fisher in 1925. These methods permit us to test hypotheses with as 
minimal assumptions as possible. The tests require high computing power 
and therefore have found greater application in recent years. However, 
the concept of permutation methods is much wider than the issue of 
permutation testing. In 1923, J. Spława-Neyman introduced a permutation 
model for the analysis of field experiments (Spława-Neyman 1923, Berry, 
Johnston & Mielke 2014). This paper was published in Polish. Neyman’s 
work was translated into English in 1990 and published in Statistical Science 
(Ledwina 2012), which allowed it to reach the international statistician 
community (Lehmann & Romano 2005, p. 210). The paper was recognized 
as a pioneering achievement in the field of statistical methodology for the 
analysis of causal relationships.

The purpose of this article is to present the possibilities of applying  
permutation methods in the analysis of dependencies. Berry, Johnston and 
Mielke Jr. (2018) present a permutation approach for generating resampling 
probability values for various measures of association. They show many 
examples of the practical use of permutation methods in association analysis. 
The article presents selected possibilities of applying permutation methods 
in the analysis of association between variables. The main focus is on various 
possibilities of using permutation methods and the possibilities of data labels 
rearranging. A proposed method to allow investigation of the significance 
of the relationship between two data sets is presented. The presented example 
illustrates the use of permutation methods for testing the significance of the 
relationship between two sets of variables. The proposed method is compared 
to the well-known canonical correlation analysis.

2. Permutation Methods

In mathematics, the term “permutation” denotes the act of rearranging 
objects or values in an ordered fashion. In statistics, the idea of permutation 
objects is used in several methods, especially in testing hypotheses 
(permutation tests).
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Permutation tests permit us to choose the form of the test statistic. 
Through sample size reduction, permutation tests can reduce the costs 
of experiments and surveys. Permutation tests are the most powerful of 
statistical procedures. There are five steps in the process of permutation 
testing (Good 2005):

1. Identify the null and the alternative hypothesis. 
2. Choose the form of the test statistic. 
3. Calculate the test statistic for the sample data.
4. Determine the frequency distribution of the test statistic using data 

permutations.
5. Make a decision using this empirical distribution as a guide.
The basic idea in permutation testing is to generate a reference 

distribution by recalculating a test statistic for many permutations of the 
data. The term “permutation methods” should not, however, be limited 
to the problem of testing hypotheses. In recent years, various statistical 
methods have been proposed that refer to the idea of the permutation model 
introduced by J. Spława-Neyman (1923).

Corain, Arboretti and Bonnini (2016) present a novel permutation-based 
nonparametric approach for ranking several multivariate populations. Using 
data collected from both experimental and observational studies, it covers 
some of the most useful designs widely applied in research and industry 
investigations, such as the multivariate analysis of variance and multivariate 
randomized complete block designs.

Berry, Johnston and Mielke Jr. (2018) use rearranging data to generate 
probability values and measures of effect size for various measures of 
association. They define association for two interval-level variables, 
measures of association for two nominal-level variables or two ordinal-level 
variables, and measures of agreement for two nominal-level or two ordinal-
level variables.

Berry, Mielke Jr. and Johnston (2016) provide a synthesis of many 
statistical tests and measures, which, at first sight, appear disjointed and 
unrelated. Numerous comparisons of permutation and classical statistical 
methods are presented, and the two classes are compared via probability 
values and, where appropriate, measures of effect size.

Mielke and Berry Jr. (2007) offer a broad treatment of statistical 
inference using permutation techniques. Its purpose is to make available 
to practitioners a variety of useful and powerful data analysis tools that 
rely on very few distributional assumptions. Although many of these 
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procedures have appeared in journal articles, they are not readily available 
to practitioners.

3. Permutational Methods in Hypothesis Testing

3.1. General Remarks

The testing of statistical hypotheses is a major branch of study in classical 
statistical inference. Based on a relatively small sample, one can infer the 
characteristics of a much larger population. There are two basic kinds 
of  statistical hypotheses: parametric and non-parametric. According to 
the parametric or non-parametric hypothesis, a parametric statistical test 
or a  nonparametric test is used. Parametric tests require that the sample 
is taken from a specified distribution, usually the normal distribution. 
Permutation tests such as nonparametric tests do not require specific 
population distributions of the variables such as the normal distribution. 
These tests use data labels rearranging. A typical application of permutation 
tests is to compare the distributions of two or more populations based on 
two samples taken independently.

3.2. Methods of Data Permutations

The permutation model is based on the data labels permutation.  
O’Gorman (2012, p. 78) lists some permutation methods which can be 
used for testing the significance of the coefficient in the linear regression 
model. In the linear regression model there is one dependent variable Y and 
k independent variables X1, X2, …, Xk. Some methods of rearranging data 
labels include:

– permute the dependent variable,
– permute the independent variable for the considered variable,
– permute the residuals from the reduced model,
– permute the residuals from the complete model.
To test the significance of a parameter in the linear regression model, 

various methods of rearranging data labels can be used. The results of 
testing the significance of the coefficient for different permutation methods 
are not equivalent. O’Gorman (2012) points out that it is not clear which 
method is superior.

Let us assume that y = [y1, y2, …, yk]
T and we want to shuffle this vector. 

To permute this vector we can use the square matrix of dimension k × k  
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Pk = [aij] where aij are only zeros and ones for i, j = 1, 2, …, k and a 1ij
i
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The examples of a permutation matrix in the case k = 4 are:
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So vector [y2, y3, y1, y4]
T is a rearrangement of vector [y1, y2, y3, y4]

T.
For the above-given permutation matrices P1, P2 and P3 we have

P1 y = [y2, y3, y1, y4]
T,

P2 y = [y1, y4, y2, y3]
T,

P3 y = [y2, y3, y4, y1]
T.

3.3. Properties of Permutations

Let A be the vector given by A = [y1, y2, …, yk]
T. The permutation of vector  

A is function a: A → A that is bijective (i.e. both one-to-one and onto). 
Identity permutation. Let D = [dij] be the identity matrix such that dii = 1,  

and dij = 0 for i ≠ j then matrix D leads to the identity permutation. If D is 
the matrix of permutation a, then for each vector A: aA = A.

Composition of permutations. Let S1 and S2 be two matrices of 
permutations a and b, then S2 S1 is the matrix of the composition of 
permutations g = ba.

Inverse permutation. Let S be the matrix of permutation a, then ST is the 
matrix of inverse permutation b, that baA = abA = A for each vector A.
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Let S1, S2 and S3 be the matrices of permutation a, b and g. Permutation 
composition is associative, e.g. S3 S2 S1 is the matrix of permutation g(ba) = 
= (gb)a.

4. Permutation Methods for Regression Models

Pearson’s correlation coefficient  r tells us about the strength of the 
linear relationship between  two variables X  and  Y. To perform a test of 
the  significance of the correlation coefficient a  random sample of size 
n should be taken. The sample data is used to calculate  r, the correlation 
coefficient for the sample. Permutation tests use data labels rearranging 
to obtain the empirical distribution of the coefficient. The data should be 
permuted N times (N is usually greater or equal to 1000). The empirical 
distribution of r is obtained from N permuted sets of data. The decision 
of  hypothesis H0 is based on the value of r and its empirical distribution. 
The  original two-dimensional data and three examples of randomly 
permuted data are presented in Figure 1. 

X Y X Y X Y X Y

x1 y1 x1 y2 x1 y6 x1 y5

x2 y2 x2 y1 x2 y5 x2 y1

x3 y3 x3 y9 x3 y8 x3 y9

x4 y4 x4 y6 x4 y7 x4 y7

x5 y5 x5 y10 x5 y9 x5 y6

x6 y6 x6 y4 x6 y4 x6 y8

x7 y7 x7 y7 x7 y1 x7 y3

x8 y8 x8 y8 x8 y10 x8 y2

x9 y9 x9 y5 x9 y2 x9 y4

x10 y10 x10 y3 x10 y3 x10 y10

Fig. 1. Example of a Two-dimensional Data Set (X, Y) and Three Random Data 
Sets (X, Y) with Randomly Rearranged Variable Y
Source: author’s own elaboration.
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There are more possibilities of rearranging data labels in the case of 
a multiple regression model than in the case of testing the significance of the 
correlation coefficient. Let us consider the multiple regression linear model:

 Y .a X a X a X ek k1 1 2 2 g= + + ++  (1)

There are many ways of data labels rearranging for one dependent 
variable Y and k independent variables X1, X2, …, Xk. There are some 
examples of possible ways of permutation of one dependent variable and  
k (k > 2) independent variables:

– permute the dependent variable Y (it is the same result as permute all 
independent variables X1, X2, …, Xk in the same way),

– permute only one independent variable Xi (i = 1, 2, …, k),
– permute two independent variables Xi and Xj (i, j = 1, 2, …, k, i ≠ j) in 

the same way,
– permute two independent variables Xi and Xj (i, j = 1, 2, …, k, i ≠ j) 

independently,
– permute two independent variables Xi and Xj (i, j = 1, 2, …, k, i ≠ j) in 

the same way and the variable Xs (s = 1, 2, …, k) independently.
Labels of original data should be rearranged to test the significance of the 

parameters of the linear model. The empirical distribution of the parameter is  
obtained based on the results for the N permuted models. Let S, S1, S2,…, Sk 
are the permutation matrices. Some typical methods of permutation for the 
multiple regression model (1) for k = 3 are:

Y
Y

Y .

a SX a SX a SX e
a S X a XS X a S X e

a X a SX a SX e

k k

k k k

k k

1 1 2 2

1 1 1 2 2 2

1 1 2 2

g

g

g

= + + + +
= + + + +

= + + + +

5. The Significance of the Association of Two Sets of Variables

In addition to the methods of studying the relationship between two 
variables or a dependent variable and many dependent variables, there 
are statistical methods that measure the association between two sets of 
variables X and Y. One of these methods is the canonical correlations 
analysis. Let X = (X1, …, Xp) and Y = (Y1, …, Yq) be two sets of variables. 
To  determine the strength of the association the permutation method 
could be used. The use of permutation methods requires data labels to be 
rearranged. These two sets can be rearranged in many ways. The variables 
in one set or two sets can be permuted independently or dependently. 
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The variables in one set (or two sets) could be grouped and permuted within 
these groups independently or dependently. The original set of variables for 
p  = q = 3 and two examples of permuted sets are presented in Figure  2. 
In the first case (on the left), the variables X1, X2 and X3 are permuted 
dependently. In the second case (on the right), all variables are permuted 
independently. 

Y1 Y2 Y3 X1 X2 X3

y11 y21 y31 x11 x21 x31

y12 y22 y32 x12 x22 x32

y13 y23 y33 x13 x23 x33

y14 y24 y34 x14 x24 x34

y15 y25 y35 x15 x25 x35

y16 y26 y36 x16 x26 x36

y17 y27 y37 x17 x27 x37

y18 y28 y38 x18 x28 x38

y19 y29 y39 x19 x29 x39

Y1 Y2 Y3 X1 X2 X3 Y1 Y2 Y3 X1 X2 X3

y11 y21 y31 x12 x22 x32 y11 y23 y35 x12 x21 x31

y12 y22 y32 x14 x24 x34 y12 y22 y34 x14 x27 x32

y13 y23 y33 x16 x26 x36 y13 y21 y39 x13 x28 x36

y14 y24 y34 x15 x25 x35 y14 y25 y37 x18 x24 x33

y15 y25 y35 x11 x21 x31 y15 y24 y31 x15 x26 x34

y16 y26 y36 x18 x28 x38 y16 y26 y33 x17 x22 x38

y17 y27 y37 x19 x29 x39 y17 y29 y36 x16 x29 x39

y18 y28 y38 x13 x23 x33 y18 y28 y32 x11 x25 x37

y19 y29 y39 x17 x27 x37 y19 y27 y38 x19 x23 x35

Fig. 2. The Original Set of Two Sets of Variables (Top) and Two Examples  
of Possible Permutations of These Sets
Source: author’s own elaboration.



Applications of Permutation Methods… 39

6. Canonical Correlations

Pearson’s correlation coefficient measures the strength of the linear 
dependency for two variables X and Y. The multiple linear regression model 
could be used to describe the dependency between the dependent variable Y 
and a set of independent variables X1, X2, …, Xk. Sometimes the association 
between the two sets of variables X and Y should be considered. Canonical 
correlation analysis could be used in this case. This method was proposed 
by  H. Hotelling in 1935–36. Canonical correlation analysis is employed 
to study the relationships between two variable sets when each variable 
set consists of at least two variables. The main objectives of canonical 
correlations are as follows (Thompson 1984):

– determining the strength of the relationships that may exist between the 
two sets, 

– deriving a set of weights for each set of dependent and independent 
variables so that the linear combinations of each set are maximally 
correlated, 

– explaining the nature of any relationships existing between the sets of 
dependent and independent variables.

Canonical correlation analysis develops several independent canonical 
functions that maximize the correlation between the linear composites, also 
known as canonical variates, which are sets of dependent and independent 
variables.

The form of Pearson’s correlation coefficient:

 
,

Var X Var Y
Cov X Y

ρ= ^
^

^h
h
h . (2)

The form of the canonical correlation coefficient:

 
a'X b'Y

a'X b'Y,
max

Var Var
Cov

,a R b Rp q
ρ=

! ! ^
^

^h
h
h . (3)

Canonical correlation analysis constructs such vectors a and b based on 
the following criteria: 

1. The first canonical variate X V Y,1 11 1 = bU a' '=  is constructed from the 
maximization of (3).

2. The second canonical variate pair  X V Y,2 2 2 2= bU a' '=   is constructed 
from the maximization of (3) with the restriction that D U D V 12

2
2

2= =^ ^h h  
and pairs U V,1 1^ h and U V,2 2^ h are uncorrelated. 
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3. At the k step, the k-th canonical variate pair X V Y,k k kk = bU a' '=  
is obtained from the maximization of (3) with the restriction that  
D U D V 1k k

2 2= =^ ^h h  and U V,k k^ h are uncorrelated with the previous (k − 1) 
canonical variate pairs. 

4. Repeat step 3 until the number of canonical variates s = min(p, q). 
The first canonical correlation coefficient is denoted by r1, the second 

by r2, and so on. The number of calculated CCA coefficients is equal to the 
minimum of the number of variables in two considered sets s = min(p, q). 
For testing the significance of the first canonical correlation coefficient, the 
following statistics can be used: Wilks’ Lambda, the Hotelling-Lawley Trace, 
the Pillai-Bartlett Trace, and Roy’s Largest Root.

7. Testing the Significance of the Association of Two Sets of Variables 

One problem to be considered in the canonical correlation analysis is to 
test the hypothesis that none of the canonical correlation coefficients r1, r2, 
… , rs is significant. To test such a hypothesis we usually use Wilks’ lambda 
statistic, the Hotelling-Lawley trace, the Pillai trace or Roy’s largest root. 
The form of these statistics is as follows:

Wilk’s lambda statistic:

 .r1 – i
i

m

1
2

1
Λ =

=
^ h%  (4)

This statistic is distributed as the Wilks Λ-distribution. Rejection of the null 
hypothesis is for small values of .1Λ

Pillai trace statistic:

 .V rm
i

i

m
2

1
=

=

^ h /  (5)

Rencher and Christensen (2012, pp. 391–95) has tables providing critical 
values for this statistic.

Hotelling-Lawley trace statistic: 

 .U
r

r
1 –

m

i

i

i

m

2

2

1
=

=

^ h /  (6)

Rencher and Christensen (2012, pp. 391–95) has tables providing critical 
values for this statistic.
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Roy’s largest root statistic:

 .r21θ=  (7)

Rencher and Christensen (2012, pp. 391–95) present tables providing critical 
values for Roy’s largest root statistic. This statistic is based only on one 
largest canonical correlation coefficient and the other statistics use all the 
canonical correlation coefficients. For this reason, Roy’s largest root statistic 
will not be included in the computer simulation studies.

8. Monte Carlo Study

The proposed method of testing the significance of dependency between 
two sets of variables is based on the permutation method. In the proposed 
method, Wilk’s lambda statistic (4) is used and the dependent rearrangement 
of one of the variable set labels is used (see Figure 2). The  proposal was 
compared to the three well-known methods of testing the significance 
of correlations in the canonical analysis in the Monte Carlo study. 
The  permutation had N = 1000 random rearrangements of data labels. 
The significance level a = 0.05 was assumed in computer simulations.

In the first part of a computer simulation, two sets of variables X and Y 
were considered. All variables were normally distributed. The sample size 
was n = 100. The above assumptions are typical for the canonical correlation 
analysis.

The first set of variables is given by X = (X1, X2, X3), where variables 
X1,  X2, X3 are independent and normally distributed with mean 10 and 
variance 1. The second set of variables is given by Y = (1 – d)Z + dX, where 
Z = (Z1, Z2, Z3), and variables Z1, Z2, Z3 are independent and normally 
distributed with mean 10 and variance 1. The parameter d (d = 0.00, 0.05, 
…, 0.25) describes the strength of the association of two sets of variables. 
For d = 0 the sets X and Y are not associated.

The estimated probabilities of rejection H0 (there is no association 
between X and Y) are presented in Table 1. The probabilities were estimated 
based on 1000 random samples. In the case of normally distributed variables 
with the sample of size n = 100, the size of all considered tests is close to the 
significance level a. The power of all tests is quite similar. The proposal has 
no advantage in this case.
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Table 1. Estimated Probability of Rejection H0 – Normal Distribution, n = 100

d
Method

Permutation Wilk’s Lambda Hotelling-
-Lawley trace Pillai trace

0.00 0.051 0.053 0.054 0.049
0.05 0.081 0.080 0.082 0.075
0.10 0.199 0.202 0.204 0.193
0.15 0.497 0.495 0.499 0.487
0.20 0.866 0.861 0.861 0.862
0.25 0.993 0.991 0.990 0.989

Source: author’s own elaboration.

The advantages of permutation tests are for the application of small 
samples and non-normally distributed variables. The next three simulations 
are based on normal, beta and gamma-distributed variables for small 
samples where n = 20.

The association of two sets X and Y of the three-dimensional variables 
were analysed in this part of the study. The considered sets are X = (X1, X2, X3)  
and Y = (1 – d)Z + dX where Z = (Z1, Z2, Z3), variables Z1, Z2, Z3 are 
independently distributed and the parameter d (d = 0.00, 0.05, …, 0.40) 
describes the strength of association of two sets.

The parameters of random variables X1, X2, X3 and Z1, Z2, Z3 are as 
follows:

– normal distribution with expected value 10 and variance 1,
– beta distribution with shape parameters s1 = 2 and s2 = 2,
– gamma distribution with shape parameter s = 2.
The probabilities of rejection of H0 are presented in Tables 2, 3, and 4. 

The probabilities were estimated based on 1000 random samples. In  the 
permutation method for each sample, the data labels were randomly 
rearranged N = 1000 times. In the first case, samples were taken from the 
normal distribution but the sample size was n = 20. The results are presented 
in Table 2. In the case of normally distributed variables and small samples 
(Table 2), the test based on the permutation method has the greatest power. 
The three other tests have similar power. The results of the computer study 
for beta distributed variables are presented in Table 3.
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Table 2. Estimated Probability of Rejection H0 – Normal Distribution, n = 20

d
Method

Permutation Wilk’s Lambda Hotelling-
-Lawley trace Pillai trace

0.00 0.046 0.041 0.052 0.033
0.05 0.069 0.064 0.078 0.047
0.10 0.070 0.074 0.087 0.046
0.15 0.088 0.090 0.110 0.056
0.20 0.186 0.173 0.187 0.144
0.25 0.285 0.263 0.278 0.226
0.30 0.496 0.468 0.479 0.438
0.35 0.726 0.688 0.682 0.664
0.40 0.907 0.873 0.858 0.859

Source: author’s own elaboration.

Table 3. Estimated Probability of Rejection H0 – Beta Distribution, n = 20

d
Method

Permutation Wilk’s Lambda Hotelling-
-Lawley trace Pillai trace

0.00 0.056 0.058 0.074 0.042
0.05 0.057 0.055 0.071 0.041
0.10 0.069 0.062 0.073 0.045
0.15 0.101 0.095 0.111 0.066
0.20 0.155 0.149 0.172 0.114
0.25 0.252 0.242 0.253 0.202
0.30 0.495 0.449 0.457 0.411
0.35 0.701 0.653 0.649 0.639
0.40 0.904 0.887 0.870 0.883

Source: author’s own elaboration.

The size of the Hotelling-Lawley test is greater than the significance level 
a in the case of beta distributed variables. The most powerful test is the test 
based on the permutation method. The results of the computer study for 
gamma-distributed variables are presented in Table 4.
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Table 4. The Estimated Probability of Rejection H0 – Gamma Distribution, n = 20

d
Method

Permutation Wilk’s Lambda Hotelling-
-Lawley trace Pillai trace

0.00 0.055 0.061 0.068 0.039
0.05 0.059 0.074 0.083 0.043
0.10 0.075 0.080 0.091 0.057
0.15 0.122 0.127 0.141 0.089
0.20 0.170 0.173 0.193 0.136
0.25 0.313 0.291 0.316 0.258
0.30 0.498 0.474 0.480 0.436
0.35 0.725 0.701 0.695 0.681
0.40 0.903 0.887 0.876 0.879

Source: author’s own elaboration.

The size of the Hotelling-Lawley test is greater than the significance level 
a in the case of gamma-distributed variables. The most powerful test is the 
test based on the permutation method.

9. Conclusions

Permutation tests are one type of permutation method. They are very 
useful for non-normally distributed data and small samples. However, 
permutation methods can be used not just for testing hypotheses. They can  
be used for constructing rankings of multivariate data or measuring the   
association between variables and sets of variables. In these methods,  
the form of data labels rearrangement is very important. The data labels can 
be permuted in many ways. Some of these methods of rearranging labels 
which can be used in the association analysis are described in the paper.

As an example of the use of the permutation method in association 
analysis, the method of testing the significance of the association between 
two sets of variables is presented in the paper. This method uses Wilk’s 
lambda statistic and is based on the dependent rearranging of data labels in 
variables in one of the considered sets. The properties of the proposal were 
compared to the well-known tests in canonical correlation analysis: Wilk’s 
lambda, the Lawley-Hotelling trace, and Pillai trace. The Monte Carlo study 
shows that for normally distributed variables and big samples the power of 
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all tests is quite similar. The proposal is most powerful for non-normally 
distributed variables and small samples.
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