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Abstract

Objective: A comparison of multidimensional populations is a very interesting and 
common statistical problem. It most often involves verifying a hypothesis about 
the equality of mean vectors in two populations. The classical test for verification of 
this hypothesis is the Hotelling’s T 2 test. Another solution is to use simulation and 
randomization methods to test the significance of differences between the studied 
populations. Permutation tests are to enable statistical inference in situations where it 
is not possible to use classical parametric tests. These tests are supposed to provide 
comparable power to parametric tests with a simultaneous reduction of assumptions, 
e.g. regarding the sample size taken or the distribution of the tested variable in the 
population. The purpose of this study is a comparative analysis of the parametric test, 
the (usual) permutation test, and the nonparametric permutation procedure using two- 
-stage ASL determination.
Research Design & Methods:  The study considered the analysis of multivariate data. 
The paper presents theoretical considerations and refers to the Monte Carlo simulation.
Findings:  The article presents a permutational, complex procedure for assessing the 
overall ASL (achieved significance level) value. The applied nonparametric statistical 
inference procedure uses combining functions. A simulation study was carried out to 
determine the size and power of the test under normality. A Monte Carlo simulation 
made it possible to compare the empirical power of this test with that of Hotelling’s 
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T 2 test. The most powerful test was the permutation test based on a two-stage ASL 
determination method using the Fisher combining function.
Implications/Recommendations: The advantage of the proposed method is that it can 
be used even when samples are taken from any type of continuous distributions in 
a population.
Contribution:  The proposed test can be used in the analysis of multidimensional 
economic phenomena.

Keywords: permutation tests, comparing populations, power of test, Monte Carlo 
simulation, R software.
JEL Classification: C30, C150, C880.

1. Introduction

Population comparisons most often involve a comparison of characteristics 
in these populations. If it is assumed that population distributions differ 
only in a location, there are various parametric and nonparametric tests to 
verify this hypothesis. Many authors examine both the power and size of 
tests for the significance of differences between means or medians in two 
or more populations using for this purpose the simulation methods based on 
bootstrap or permutation tests (Janssen & Pauls 2005, Chang & Pal 2008, 
Kończak 2016, Anderson et al. 2017).

In a situation where a statistical test for certain measurable variables is 
conducted in several multidimensional populations, the hypothesis about 
an equality of mean vectors in these populations may need to be verified. 
A special case is the study of differences in means of variables , , ,X X XP1 2 f  
in two populations. The problem is to test the hypothesis about an equality 
of mean vectors of a P-dimensional random variable in the first and the 
second population, respectively, in the form of:

 H0: μ1 = μ2, (1)

against the alternative hypothesis: 

 H1: μ1 ≠ μ2. (2)

The parametric test for verification of this hypothesis (1) is Hotelling’s T 2 

test. The method using the T 2 test was proposed by Hotelling (1931, 1947) 
and Mahalanobis (1930, 1936) and is a generalisation of the Student’s t test 
for many variables. To use the test, the assumption that the samples were 
taken from a population with multidimensional normal distributions is made 
(Rencher 2002).

In Hotelling’s T 2 test, two populations are considered from which two 
samples are taken independently from the distribution Np(μ1, Σ1) and from 
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the distribution Np(μ2, Σ2). Assuming that covariance matrices are unknown 
but the same (Σ1 = Σ2 = Σ), in order to verify the null hypothesis (1) on the 
equality of the mean vectors, this statistic can be used:
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If the H0 hypothesis is true, the statistic (3) has a Hotelling’s T 2 

distribution with P and n n 1–1 2+  degrees of freedom, where P is the number 
of variables (dimensions) examined and ,n n1 2 are the sizes of samples taken 
from populations. It is also possible to determine the critical values for this 
statistic using a statistic of the form (Krzyśko 2009):

 ,F n n P
n n P

T2
1

–
– –

1 2

1 2 2= +
+

^ h  (4)

which has a Snedecor’s F distribution of P and n n P 1– –1 2+  degrees of 
freedom.

Hotelling’s T 2 test can only be used if variables in each population have 
a multidimensional normal distribution. The article presents a method for 
testing a difference between two vectors of mean values that can also be 
used when the assumption regarding the occurrence of a multidimensional 
normal distribution in populations is not met. A simulation, randomisation 
approach was proposed to investigate a significance of differences 
occurring between the studied populations. The aim of this research is to 
compare tests for the equality of mean vectors in two populations under 
multidimensional normality: the parametric test, the (usual) permutation 
test and the nonparametric permutation procedure using two-stage ASL 
(achieved significance level) determination. A simulation study to determine 
the size and power of the tests was carried out in the R statistical computing 
environment (R Core Team 2016).

2. Nonparametric Combination Procedures

It is assumed that there are two samples , , , ,X X Xp P1
1 1 1f f  and

, , , ,X X Xp P1
2 2 2f f  independently taken from the population with 

distribution F1 and F2. These populations have continuous, P-dimensional 
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distributions Fi for i = 1, 2 with unknown parameters. A null hypothesis 
is verified claiming that two samples were taken from populations with 
identical distributions in the form of : .H F x F x0 1 2=^ ^h h  Data taken from  
two populations can be noted (Marozzi 2008).
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where Xp ij indicate the i-th , ,i n1 jf=^ h sample for the p-th variable 
, ,p P1 f=^ h in the j-th ,j 1 2=^ h population and Xp  is the combined sample 

for the p-th variable.
The problem of testing equality of means in multidimensional populations 

can be considered in accordance with the Pesarin (2001) proposal. Pesarin 
initiated the approach to the nonparametric testing problem. He considered 
(Pesarin 2001) reducing the scope of the null hypothesis by splitting it into 
several partial hypotheses. This nonparametric approach is to perform some 
reasonable tests for each individual partial hypothesis and combine their 
results with a chosen combining function.

When the study deals with a problem of comparing the P means in 
two populations, partial P hypotheses are taken into account. The null 
hypothesis about the identity of the means vectors is in the form of:

 : ,H
p

P
p p

0
1

1 2µ µ=
=
(  (5)

against the alternative hypothesis:

 : .H
'p

P
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=
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The study considered test statistics in the form of:

 .T X X–p p p
1 2= r r  (7)
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The decision was made using the empirical distribution of the test statistic 
obtained on the basis of permutation of the data set. A nonparametric, 
complex procedure was used to assess the overall ASL values. In the first 
stage of separate testing of each of the P partial hypotheses considered, 
the ASL values are determined in accordance with the usual permutation 
method used during verification of the hypothesis for one-dimensional data, 
i.e.:

1. The significance level α is determined.
2. The statistics values are calculated on the basis of the sample data 

.Tp
0^ h
3. Perform a permutation of data N-times, then calculate the statistics 

test value (Tk).
4. Based on the empirical distribution of statistics, the ASL value for each 

of the compared variables is estimated according to the formula:
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The method of permutation of multidimensional data is shown in Figure 1.

Data                                          Subsequent permutations of variables

                                                                           1                       …                             N

1X 2X ... PX

1x11
2x11 ... Px11

1x21
2x21 ... Px21

... ... ... ...

1xn1
2xn1 ... Pxn1

1x12
2x12 ... Px12

1x22
2x22 ... Px22

... ... ... ...

1xn2
2xn2 ... Pxn2

1X 2X ... PX

…

1x21
2x21 ... Px21

1x12
2x12 ... Px12

... ... ... ...

1xn1
2xn1 ... Pxn1

1x52
2x52 ... Px52

1x22
2x22 ... Px22

... ... ... ...

1x81
2x81 ... Px81

1X 2X ... PX

1x72
2x72 ... Px72

1x31
2x31 ... Px31

... ... ... ...

1xn2
2xn2 ... Pxn2

1x51
2x51 ... Px51

1x32
2x32 ... Px32

... ... ... ...

1x11
2x11 ... Px11

Fig. 1. Scheme of Permutations of Data
Source: author’s own work.
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The second stage of the nonparametric statistical inference procedure 
involves the determination of the overall ASL value using combining 
functions (Pesarin 2001):

ϕT = ϕ , , .ASL ASL p1T f T^ h
There are many forms of combining functions for determining an overall 

ASL value. However, authors most often point to the following functions: 
– the Fisher omnibus combining function (Fisher 1932): 

,logC ASL T2–F p

p

P

1
$=
=

t^ ^^ hhh /

– the Liptak combining function (Liptak 1958):

,C ASL T1 –L p

p

P
1

1

–Φ=
=

t^ ^^ hhh /

where Φ  denotes the standard normal distribution function,
– the Tippet combining function (Tippet 1931):

, , .maxC ASL T ASL T1 1– –T P1 f= t t^ ^^ h hh " ,
The observed statistic value for the sample data using Fisher combining 

functions can be determined as:

 ,logT ASL T2– T
p

p

P
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whereas the distribution of this statistic is determined on the basis of the 
same permutations as in the first step, for example for k-th permutation:
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The overall ASL value for the test under consideration is estimated using 
the formula:
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If ASL < α, the hypothesis H0 is rejected, otherwise there is no basis for 
rejecting the H0 hypothesis.
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3. Monte Carlo Simulation

Considering the nonparametric procedure based on the Fisher combining 
function, the size and power of the test were estimated by a simulation 
study. A Monte Carlo analysis was carried out allowing comparison of two 
populations with three-dimensional normal distributions with parameters:  
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with the increment 0.2. In the simulations, samples of sizes (n1, n2) = (10, 10),  
(20, 20), (30, 30), (50, 50), (100, 100) were generated. The results of the 
simulations carried out to determine the size and power of the tests are 
presented in Table 1 (small sample sizes) and Table 2 (large sample sizes). 
For comparative purposes, the tables also include results obtained for the 
parametric Hotelling’s T 2 test and its permutation equivalent. A procedure 
for conducting each test included 1,000 Monte Carlo simulations and 1,000 
permutations of data and the assumed level of significance was . .0 05α =

–1.0 –0.5 0.0 0.5 1.0

0.2

0.4

0.6

0.8

1.0

x

p (n1, n2)
(10, 10)
(20, 20)
(30, 30)
(50, 50)
(100, 100)

Fig. 2. Graphs of the Empirical Power of the Permutation Test T  for Different  
Sample Sizes
Source: author’s own work in the R programme.

In the case of analysis of multidimensional, equinumerous samples, the 
sizes of the presented tests are close to the assumed level of significance. 
The values of estimated probabilities of rejecting the hypothesis H0, when 
it was true only slightly differed from α = 0.05. The three considered tests 
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Table 1. Hotelling’s T 2 Test Power and Estimation of Permutation Tests’ Power  
(Small Sample Sizes)

Test Statistic
x T 2 T 2 (perm) T

(10, 10)
–1.0 0.828 0.829 0.900
–0.8 0.632 0.628 0.701
–0.6 0.381 0.387 0.440
–0.4 0.187 0.193 0.199
–0.2 0.079 0.079 0.083

0 0.048 0.046 0.048
0.2 0.075 0.077 0.076
0.4 0.157 0.155 0.177
0.6 0.389 0.385 0.447
0.8 0.629 0.625 0.715
1.0 0.846 0.843 0.902

(20, 20)
–1.0 0.996 0.995 0.998
–0.8 0.958 0.957 0.972
–0.6 0.747 0.753 0.790
–0.4 0.390 0.394 0.408
–0.2 0.102 0.105 0.105

0 0.045 0.043 0.045
0.2 0.117 0.119 0.125
0.4 0.373 0.380 0.401
0.6 0.760 0.759 0.801
0.8 0.947 0.948 0.963
1.0 0.996 0.996 0.998

(30, 30)
–1.0 1.000 1.000 1.000
–0.8 0.998 0.997 0.998
–0.6 0.913 0.911 0.927
–0.4 0.548 0.556 0.586
–0.2 0.158 0.160 0.170

0 0.055 0.059 0.054
0.2 0.160 0.160 0.170
0.4 0.552 0.560 0.596
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Test Statistic
x T 2 T 2 (perm) T

0.6 0.916 0.917 0.943
0.8 0.992 0.992 0.995
1.0 1.000 1.000 1.000

Source: computer simulations in the R programme.

Table 2. Hotelling’s T 2 Test Power and Estimation of Permutation Tests’ Power  
(Large Sample Sizes)

Test Statistic
x T 2 T 2 (perm) T

(50, 50)
–1.0 1.000 1.000 1.000
–0.8 1.000 1.000 1.000
–0.6 0.987 0.987 0.989
–0.4 0.835 0.836 0.850
–0.2 0.255 0.258 0.271

0 0.045 0.049 0.048
0.2 0.257 0.257 0.264
0.4 0.805 0.805 0.825
0.6 0.992 0.993 0.995
0.8 1.000 1.000 1.000
1.0 1.000 1.000 1.000

(100, 100)
–1.0 1.000 1.000 1.000
–0.8 1.000 1.000 1.000
–0.6 1.000 1.000 1.000
–0.4 0.997 0.997 0.997
–0.2 0.528 0.528 0.536

0 0.044 0.044 0.041
0.2 0.520 0.528 0.535
0.4 0.986 0.986 0.988
0.6 1.000 1.000 1.000
0.8 1.000 1.000 1.000
1.0 1.000 1.000 1.000

Source: computer simulations in the R programme.

Table 1 cnt’d
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reached comparable assessments of the probabilities of rejecting the H0 
hypothesis when it was false. In the majority of analysed cases, however, 
the most powerful test was the permutation test based on a two-stage ASL 
determination method using the Fisher combining function.

The probabilities of recognising differences between means vectors 
increased as the differences between the considered three-dimensional 
models of the populations increased. Analysing the graphs of the empirical 
power of the permutation test depending on the sample sizes taken from 
the populations (Figure 2), it can be seen that for 10 observations the 
differences in means at level 1 are detected with a probability of around 0.9 
by the permutation test. For samples with 50 observations, this probability 
was obtained for the difference in means of around 0.5.

4. Conclusions

The aim of the simulation research was to determine the ability of 
the presented permutation test to maintain the nominal probability 
of committing the type I error and the ability to obtain a high probability 
of rejecting a false null hypothesis in the conditions of changing distribution 
parameters in populations from which samples were taken. A simulation 
study to determine the size and power of the tests was carried out.

The results obtained in the simulation confirm the effectiveness of  the 
permutation procedure and the possibility of its application in order 
to infer differences between vectors of means in two populations with 
multidimensional normal distributions. All testing procedures (under 
normality) ensured control of the type I error at the assumed level of   
significance. The higher power of the presented tests was achieved thanks 
to the use of a nonparametric combination procedure that uses Fisher’s 
combining functions to evaluate the overall ASL value. The advantage of 
the presented method is that the method can be used even when samples 
are taken from any type of continuous distributions in a population. In the 
further research other forms of combining functions can be considered and 
a simulation study that takes into account various distributions of the studied 
variables can be performed.
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