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Abstract 

 

Grouping methods are one of the most commonly used data mining methods in banking. Their goal is 

to describe population of clients. They usually are a starting point for subsequent analyzes. The aim of the 

article is to present the results of grouping individual clients of the bank with the differential evolution 

algorithm. Differential evolution algorithm is an alternative to the commonly used k-means algorithm. 

Algorithm is generating several competing solutions in one iteration. It allows to become independent of 

starting vectors and to be more effective in searching for an optimal solution. Clustering was run with 

preselected continuous variables characterizing all individual clients (deposit, credit and investment). The 

calculations were run using computer program written in SAS (4GL/SQL). The differential evolution 

algorithm itself has been enriched with a variable that allows the selection of the optimal number of 

clusters. Each iteration contained proposed solutions (chromosomes) which were evaluated by the target 

function built on the CS measure proposed by Chou (Das et. al., 2009) . Conducted analysis showed that 

the algorithm correctly grouped the bank's clients. 
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1. Introduction  

 

In today's world more and more companies have problems with effective 

management of available data. The gap between the amount of data that is generated, 

stored and the degree of their understanding is constantly growing. According to a 

survey conducted by IBM among the representatives of the largest banks, over 40% of 

them have problems with the excess of information and the lack of appropriate tools for 

analyzing them (Giridhar et al., 2011).  

Grouping methods are effective in describing populations. Many authors have 

studied these methods (Everitt et al., 2011; Feoktistov and Janaqi, 2004; Gan et al., 

2007). 
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Most classic grouping algorithms have two major disadvantages: 

1. Easily fall into local optima in multidimensional spaces that have multimodal 

objective functions 

2. The efficiency of searching for a solution depends very much on the start vectors 

In literature, there is a description of grouping methods as a method without 

a supervisor, while most traditional algorithms require a priori knowledge of the number 

of clusters, which means that this is not a method without the interference of an 

outsider. On the other hand, in many practical applications it is impossible to provide 

even an approximate number of groups for an unknown data set. 

The limitations of classical grouping methods, including the k-means algorithm, led 

the researchers to search for new, more effective grouping methods. One of the 

directions for the development of grouping algorithms was to treat them as an 

optimization problem. Over the time, the paradigm of evolutionary computation, the 

relationship between optimization and biological evolution, has evolved. Evolutionary 

calculations use the power of natural selection and allow to use the computing power of 

computers for automatic optimization (Das et al., 2009). 

 

2. Differential evolution algorithm – selected issues  

 

Differential evolution algorithm is part of heuristic methods, because the goal of 

optimization is not to find the exact equation describing the studied phenomenon, but to 

search the available space for solutions. These solutions are constructed using random 

elements. What is more, in one iteration of the algorithm several competing solutions 

are created. Subsequent solutions are created using similarities to the evolutionary 

mechanisms occurring in nature. These are the ones that, according to the defined 

objective function, are the best. The characteristic feature of the differential evolution 

algorithm is that solutions are created on the basis of real variable vectors, not vectors 

coded to zero-one sequences 

Since 1995 differential evolution algorithm (Storn, 1995; Storn and Price, 1997) 

drew practitioners' attention in optimization due to the degree of resistance, the speed of 

convergence and the accuracy of solutions for real optimization problems. The 

differential evolution algorithm has defeated many algorithms, such as genetic 

algorithms, evolutionary strategies and memetic algorithms (Das et al., 2016). 



 3 

Suppose we have a set of objects Np vectors, each has D dimensions. In addition, 

we mark 𝑷𝑿 as the current population of solutions to the optimization problem, which 

was created as an initial solution or at any subsequent stage of the algorithm's operation. 

𝑷𝑿,𝑔 = (𝑿𝑖,𝑔), 𝑖 = 0,1, … , 𝑁𝑝 − 1, 𝑔 = 0,1, … , 𝑔𝑚𝑎𝑥  (1) 

𝑿𝑖,𝑔 = (𝑥𝑗,𝑖,𝑔), 𝑗 = 0,1, … , 𝐷 − 1 (2) 

Index 𝑔 = 0,1, … , 𝑔𝑚𝑎𝑥 denotes the generation to which the vector belongs. Each 

vector is assigned to the corresponding population index 𝑖 = 0,1, … , 𝑁𝑝 − 1. The 

dimensions of the vector are marked by 𝑗 = 0,1, … , 𝐷 − 1. 

The differential evolution algorithm generates mutant vectors in the next step, which 

will be marked as follows: 

𝑷𝑽,𝑔 = (𝑽𝑖,𝑔), 𝑖 = 0,1, … , 𝑁𝑝 − 1, 𝑔 = 0,1, … , 𝑔𝑚𝑎𝑥 

𝑽𝑖,𝑔 = (𝑣𝑗,𝑖,𝑔), 𝑗 = 0,1, … , 𝐷 − 1. 

(3) 

(4) 

However, the vectors after crossover will be marked as follows: 

𝑷𝑼,𝑔 = (𝑼𝑖,𝑔), 𝑖 = 0,1, … , 𝑁𝑝 − 1, 𝑔 = 0,1, … , 𝑔𝑚𝑎𝑥 

𝑼𝑖,𝑔 = (𝑢𝑗,𝑖,𝑔), 𝑗 = 0,1, … , 𝐷 − 1 

(5) 

(6) 

The first stage, i.e. setting the initial vectors, consists in generating starting vectors. 

Initial parameters (for g=0) are set within limits that correspond to a range that is 

acceptable for the intended solution. Therefore, if j-th the search task parameter has 

ranges marked as 𝑥𝑚𝑖𝑛,𝑗 and 𝑥𝑚𝑎𝑥,𝑗 and 𝑟𝑎𝑛𝑑𝑖,𝑗(0,1) means j-th realizations of a 

uniform distribution from the range from 0 to 1 for i-th vector then can be determined j-

th component i-th population element, as: 

𝑥𝑖,𝑗(0) = 𝑥𝑚𝑖𝑛,𝑗 + 𝑟𝑎𝑛𝑑𝑖,𝑗(0,1) ∗ (𝑥𝑚𝑎𝑥,𝑗 − 𝑥𝑚𝑖𝑛,𝑗) (7) 

The differential evolution algorithm searches for the global optimum in D-

dimentional continuous hyperspace. It starts with a randomly selected population Np D-

dimensional values of parameter vectors. Each vector, also known as genome / 

chromosome, is a proposed solution in a multidimensional optimization issue. The next 

generations of solutions in the differential evolution are marked as 𝑔 = 0,1,2, … , 𝑔, 𝑔 +

1 . 
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The vector parameters may change with the appearance of new generations, 

therefore the notation for which it will be accepted, for which 𝑖-th population vector for 

the current generation over time (g=g) as: 

𝑋⃗𝑖(𝑔) = [𝑥1,1(𝑔), 𝑥𝑖,2(𝑔), … , 𝑥𝑖,𝐷(𝑔)]𝑇 (8) 

where i=1,2,…,Np. 

Mutation means a sudden change in the characteristics of the chromosome gene. In 

the context of evolutionary computation, a mutation means a change or disorder of a 

random component. Most evolutionary algorithms simulate the effect of mutations 

through the additivity of the component generated with a given probability distribution. 

In the differential evolution algorithm, a uniform distribution of the vector of the form 

differences was used: 

∆𝑋⃗𝑟2,𝑟3 = (𝑋⃗𝑟2 − 𝑋⃗𝑟3)  (9) 

In the differential evolution algorithm, the mutation creates a successor vector V⃗⃗⃗i(g) 

for changing the population element X⃗⃗⃗i(g) in every generation or iteration of the 

algorithm. 

To create a vector V⃗⃗⃗i(t) for each i-th element of the current population, the other 

three disjoint vectors X⃗⃗⃗r1
i (g), X⃗⃗⃗r2

i (g), X⃗⃗⃗r3
i (g) are randomly selected from the current 

population. Indexes r1
i , r2

i , r3
i  are mutually exclusive integers selected from a range 

[1,NP], which are also different from the index and the base vector. Indexes are 

generated randomly for each mutated vector. Then, the difference of any two of the 

three vectors is scaled by the number F and added to the third vector. In this way, we 

get a vector V⃗⃗⃗i(g) expressed as: 

𝑉⃗⃗𝑖(𝑔) = 𝑋⃗𝑟1
𝑖 (𝑔) + 𝐹. (𝑋⃗𝑟2

𝑖 (𝑔) − 𝑋⃗𝑟3
𝑖 (𝑔))  (10) 

The mutation scheme shows different ways of differentiating the proposed solutions. 

The crossover operation is used to increase the diversity of the population of 

solutions. Crossing takes place after generating a donor vector through a mutation. The 

algorithms of the differential evolution family use two intersection schemes - 

exponential and binomial (zero-one). The donor vector lists the components with the 

target vector 𝑋⃗𝑖(𝑔) to create a trial vector 
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𝑈⃗⃗⃗𝑖(𝑔) = [𝑢1,1(𝑔), 𝑢𝑖,2(𝑔), … , 𝑢𝑖,𝐷(𝑔)]𝑇 (11) 

In exponential crossover, we first select a random integer n from range [0,D-1]. The 

drawn number is the starting point for the target vector from which the components are 

crossed with the donor vector. An integer L is also selected from range [1,D]. L 

indicates the number of components in which the donor vector is involved. After 

selection n and L trial vector takes the form: 

𝑢𝑖,𝑗(𝑔) = {
𝑣𝑖,𝑗(𝑔) 𝑑𝑙𝑎  𝑗 = 〈𝑛〉𝐷 , 〈𝑛 + 1〉𝐷 , … , 〈𝑛 + 𝐿 − 1〉𝐷

𝑥𝑖,𝑗(𝑔), 𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟 𝑗 ∈ [0, 𝐷 − 1]
 (12) 

where the intervals denote the module modulo function D. Integer L is drawn from the 

sequence [1,2,…,D] according to the following pseudocode: 

L=0; 

Do 

{ 

L=L+1; 

} while (rand(0,1)<CR) AND (L<D)); 

As a result, the probability(𝐿 ≥ 𝑣) = (𝐶𝑅)𝑣−1 for any 𝑣 > 0. Crossover rate (CR) is 

a parameter the same as F. For each donor vector, a new set n and L must be drawn as 

described above. 

On the other hand, binomial crossover is carried out for each D variables each time,  

when the number selected is from 0 to 1 is less than or equal to the value CR. In this 

case, the number of parameters inherited from the donor has a very similar distribution 

to the binomial one. This scheme can be represented in the following way: 

𝑢𝑖,𝑗,𝑔 = {
𝑣𝑖,𝑗,g, 𝑗𝑒ś𝑙𝑖 (𝑟𝑎𝑛𝑑𝑖,𝑗(0,1) ≤ C𝑅 𝑙𝑢𝑏 𝑗 = 𝑗𝑟𝑎𝑛𝑑)

𝑥𝑖,𝑗,g, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (13) 

where 𝑟𝑎𝑛𝑑𝑖,𝑗(0,1)  ∈ [0,1] is a randomly drawn number that is generated for every j-th 

of the i-th parameter of the vector. 𝑗𝑟𝑎𝑛𝑑  ∈ [1,2, … , 𝐷] is a randomly selected index that 

ensures that U⃗⃗⃗i,g contains at least one component from the vector V⃗⃗⃗i,g. 

This is determined once for each vector in a given generation. CR is an estimate of 

true probability pCr the event that the component of the sample vector will be inherited 

from the parent. It may also happen that in the two-dimensional search space, three 

possible test vectors can be the result of one-dimensional mating of the mutant / donor 

vector 𝑉⃗⃗𝑖(𝑔) with the target vector 𝑋⃗𝑖(𝑔). Trial vectors: 
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a) 𝑈⃗⃗⃗𝑖(𝑔) = V⃗⃗⃗i(g) both components 𝑈⃗⃗⃗𝑖(𝑔) inherited from the vector V⃗⃗⃗i(g) 

b) 𝑈⃗⃗⃗𝑖′(𝑔) = 𝑉⃗⃗𝑖(𝑔) one component (j=1) comes from vector 𝑉⃗⃗𝑖(𝑔), second (j=2) from 

vector 𝑋𝑖(𝑡)  

c) 𝑈⃗⃗⃗𝑖′′(𝑔) = V⃗⃗⃗i(g) one component (j=1) comes from vector 𝑋𝑖(𝑔), second (j=2) from 

vector V⃗⃗⃗i(g)  

The last stage of the differential evolution algorithm is selection, i.e. the choice 

between the vector 𝑋⃗𝑖(𝑔) and a newly designated test vector 𝑈⃗⃗⃗𝑖(𝑔). The decision which 

of the two vectors will survive in the next generation g+1 depends on the value of the 

matching function. If the values of the matching function for the sample vector is better 

than the value of the target vector, the existing vector is replaced with the new vector.  

𝑋⃗𝑖(𝑔 + 1) = {
𝑈⃗⃗⃗𝑖(𝑔) 𝑑𝑙𝑎  𝑓 (𝑈⃗⃗⃗𝑖(𝑔)) ≤ 𝑓 (𝑋⃗𝑖(𝑔))

𝑋⃗𝑖(𝑔) 𝑑𝑙𝑎 𝑓 (𝑈⃗⃗⃗𝑖(𝑔)) > 𝑓 (𝑋⃗𝑖(𝑔))
 (14) 

where 𝑓(𝑋⃗) is a minimized function. The selection process consists in selecting one of 

two variants. The adjustment of population members improves in subsequent 

generations or remains unchanged, but never deteriorates. 

CS (Candidate Solution) Measure proposed by Chou (Chou et al., 2004) is an 

objective function in this study. Group centroids are determined as the average vectors 

belonging to a given cluster 

𝑚̅𝑖 =
1

𝑁𝑖
∑ 𝑍̅𝑗

𝑍𝑗∈𝐶𝑖

 (15) 

The distance between two points 𝑍̅𝑝 and 𝑍̅𝑦 is marked as 𝑑(𝑍̅𝑝, 𝑍̅𝑦) . Then the CS 

measure can be defined as:  

𝐶𝑆(𝑘) =

1
𝑘

∑ [
1

|Ci|
∑ max𝑍𝑦∈𝐶𝑖

{𝑑(𝑍̅𝑝, 𝑍̅𝑦)}
𝑍𝑦∈𝐶𝑖

]𝑘
𝑖=1

1
𝑘

∑ [ min
𝑗∈𝑘,𝑗≠𝑖

𝑑(𝑚̅𝑖 , 𝑚̅𝑗)]𝑘
𝑖=1

=

∑ [
1

|Ci|
∑ max𝑍𝑦∈𝐶𝑖

{𝑑(𝑍̅𝑝, 𝑍̅𝑦)}
𝑍𝑦∈𝐶𝑖

]𝑘
𝑖=1

∑ [ min
𝑗∈𝑘,𝑗≠𝑖

𝑑(𝑚̅𝑖, 𝑚̅𝑗)]𝑘
𝑖=1

 

(16) 
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The measure is a function of the ratio of the amount of intra-group dispersion and 

the separation between groups. The CS measure is more effective at clusters with 

different density and / or different sizes than other measures.  

 

3. Design of the study  

 

The database of commercial bank clients was used for the study. It has been limited 

to the part of the population for which the actions taken will translate in the maximum 

way into business benefits. In particular, clients meet the following criteria: individual 

clients with active products, aged from 18 to 75 years, not being bank employees, with 

positive marketing consent, without delays in repayment of loan products. 

As for the variables used for the study, the choice was not accidental. Variables 

selected for this study can be evaluated for each customer regardless of whether they 

have deposit, credit or investment products. Pre-processing of data allowed to eliminate 

outliers from the studied population. Due to the strong right-side skewness of the 

variables, a transformation was made by adding a constant 0.001, and then their 

logarithmisation. As a result, the resulting distributions of variables are more 

symmetrical. 

The final set of variables that took part in the study is presented below:  

- ZM1 (DEPOZYTY) - Total funds on accounts and deposits in thousands of PLN 

- ZM2 (INWESTYCJE) - Total funds in investment products in thousands of PLN 

- ZM3 (LUDNOSC) -  number of inhabitants, based on the city from the 

correspondence address and data published by the Statistics Poland 

- ZM4 (KREDYTY) - amount of bank loans taken in thousands of PLN 

- ZM5 (SALDO_BIK) - balance for repayment on credit products outside the 

bank, based on inquiries from BIK in thousands of PLN 

- ZM6 (AVG_TRN_INCOMING_ALL_3M) - average monthly income on 

customer's accounts in the last 3 months in thousands of PLN 

- ZM7 (AVG_TRN_INCOMING_CLEAN_3M) – cleaned average monthly 

income on customer's accounts in the last 3 months in thousands of PLN. 

- ZM8 (AVG_TRN_OUTGOING_ALL_3M) -  average monthly outflows from 

customer accounts in the last 3 months in thousands of PLN 

- ZM9 (AVG_TRN_OUTGOING_CLEAN_3M) – cleaned monthly average 

outflows from customer accounts in the last 3 months in thousands of PLN. 
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- ZM10 (AVG_TRN_OUT_DEBIT_3M) - average monthly transaction amount 

on the debit card from the last 3 months in thousands of PLN 

- ZM11 (AVG_TRN_OUT_CREDIT_3M) - monthly average amount of credit 

card transactions from the last 3 months in thousands of PLN 

- ZM12 (WIEK_LATA) - customer's age in years 

- ZM13 (STAZ_LATA) - customer experience in years 

Table 1 outlines constants used in the algorithm. 

 

Table 1. Constants used in the study. 

Constant  Value Description of the constant 

LZ 13 Number of variables describing the client 

LC 13 Number of chromosomes 

LK 15 Maximum number of clusters 

SA 0.2 Constant activation of the vector 

F 0.7 Mutation operator 

Iterations 15 Number of iterations 

CR 1 Crossover rate 

Source: the author’s own calculations. 

 

For the purpose of optimizing number of centroids dimensional matrix is created 

MRc,k,z, where c means the number of chromosomes, k means the number of clusters, z 

means the number of variables. Number of variables is increased by 1. An additional 

variable is used to store information on whether the cluster is active or inactive in the 

given iteration (Das et al., 2008). Values for individual matrix elements are generated 

according to the formula (7). An additional variable indicating focus activation is 

determined based on the rule: If the randomly generated number from the range 0 to 1 is 

smaller than the activation constant (SA) then the variable takes the value 0, otherwise it 

takes the value 1. 

 

4. Results of empirical analyses 

  

The smallest value of the CS function in the fifteenth iteration was obtained for 

chromosome number 3. This solution was chosen as the optimal solution. 
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Table 2 contains the characteristics of chromosome 3, which divided the surveyed 

population of the bank's clients into 9 groups (the maximum number of groups on which 

the population could be divided into 15). 

 

Table 2. Numbers and share of groups for chromosome 3. 

Group No of Clients % of total 

8 92 109 45.71% 

4 44 545 22.11% 

6 29 047 14.41% 

3 20 003 9.93% 

5 5 476 2.72% 

14 3 582 1.78% 

1 2 839 1.41% 

15 2 075 1.03% 

12 1 832 0.91% 

SUM 201 508 100.00% 

Source: the author’s own calculations. 

 

The results of grouping in Table 2 indicate that the distinguished groups are 

characterized by nonequal distribution of the number of clients in groups. Group 8 is 

more selective and gathers 45.71% of clients, group 4 contains 22.11% of clients, and 

the third group 6 includes 14.41% of clients. The three mentioned groups gather over 

80% of the surveyed population. 

More detailed characteristics of the distinguished groups of clients are presented in 

the table 3, which contains average values of features in individual groups. The data 

presented in table 3 indicate that individual groups differ from each other. Thanks to the 

knowledge of average values for particular groups, it is possible to indicate groups of 

transactionally active customers (groups 14,5,6) and customers who use accounts less 

frequently (group 3,8,4,1). The most-affluent group of customers with very high means 

is without a doubt group number 14. 

 

Table 3. Average values of variables ZM1-ZM13 for clusters obtained by the 

differential evolution algorithm 
Cluster ZM1 ZM2 ZM3 ZM4 ZM5 ZM6 ZM7 ZM8 ZM9 ZM10 ZM11 ZM12 ZM13 

8 8 0 452 137 88 5 4 5 3 0 0 43 5 

4 2 5 273 5 1 5 4 5 4 0 0 43 6 

6 20 10 500 182 146 22 17 22 17 1 0 42 6 

3 28 4 453 7 45 1 1 1 0 0 0 47 6 
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5 60 61 627 325 0 26 20 27 19 0 1 41 6 

14 113 97 758 414 144 113 84 106 73 2 1 42 6 

1 20 67 473 223 114 4 3 4 2 0 0 43 6 

15 24 48 321 264 10 10 8 7 5 0 0 41 5 

12 0 2 131 7 117 15 11 18 15 0 0 41 3 

Source: the author’s own calculations. 

 

Thanks to the use of the differential evolution algorithm to group the bank's clients, 

we can get information on how many natural groups exists in a short time. Moreover, 

the number of groups has been calculated, not imposed in advance. The algorithm 

evaluated and compared obtained results for other candidate solutions in subsequent 

iterations, recognizing according to the values of the objective function that the optimal 

division of this group of customers contains 9 clusters. 

 

5. Conclusions 

 

The differential evolution algorithm is a promising approach to optimization, because it 

generates a whole set of solutions that can be easily adapted to carry out the 

optimization again. The fact of keeping a set of solutions, not only the best solution, 

allows faster adaptation to new conditions using the previously made calculations. It is 

resistant in terms of the choice of parameters as well as the regularity in which it finds 

the global optimum. Algorithm is a direct search solution method, versatile enough to 

solve problems whose objective function lacks the analytical description needed to 

determine the gradient. The algorithm is also very simple to use and modify. 

Evolutionary algorithms, in particular the differential evolution algorithm do well 

with continuous variables when grouping clients. Customers from particular groups can 

be synthetically described by the mean vector for variables used in clustering. They 

allow to effectively separate customers with the same basket of products, but differing 

in the level of individual variables. 
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