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Abstract

Grouping methods are one of the most commonly used data mining methods in banking. Their goal is
to describe population of clients. They usually are a starting point for subsequent analyzes. The aim of the
article is to present the results of grouping individual clients of the bank with the differential evolution
algorithm. Differential evolution algorithm is an alternative to the commonly used k-means algorithm.
Algorithm is generating several competing solutions in one iteration. It allows to become independent of
starting vectors and to be more effective in searching for an optimal solution. Clustering was run with
preselected continuous variables characterizing all individual clients (deposit, credit and investment). The
calculations were run using computer program written in SAS (4GL/SQL). The differential evolution
algorithm itself has been enriched with a variable that allows the selection of the optimal number of
clusters. Each iteration contained proposed solutions (chromosomes) which were evaluated by the target
function built on the CS measure proposed by Chou (Das et. al., 2009) . Conducted analysis showed that

the algorithm correctly grouped the bank's clients.
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1. Introduction

In today's world more and more companies have problems with effective
management of available data. The gap between the amount of data that is generated,
stored and the degree of their understanding is constantly growing. According to a
survey conducted by IBM among the representatives of the largest banks, over 40% of
them have problems with the excess of information and the lack of appropriate tools for
analyzing them (Giridhar et al., 2011).

Grouping methods are effective in describing populations. Many authors have
studied these methods (Everitt et al., 2011; Feoktistov and Janagi, 2004; Gan et al.,
2007).
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Most classic grouping algorithms have two major disadvantages:

1. Easily fall into local optima in multidimensional spaces that have multimodal

objective functions

2. The efficiency of searching for a solution depends very much on the start vectors

In literature, there is a description of grouping methods as a method without
a supervisor, while most traditional algorithms require a priori knowledge of the number
of clusters, which means that this is not a method without the interference of an
outsider. On the other hand, in many practical applications it is impossible to provide
even an approximate number of groups for an unknown data set.

The limitations of classical grouping methods, including the k-means algorithm, led
the researchers to search for new, more effective grouping methods. One of the
directions for the development of grouping algorithms was to treat them as an
optimization problem. Over the time, the paradigm of evolutionary computation, the
relationship between optimization and biological evolution, has evolved. Evolutionary
calculations use the power of natural selection and allow to use the computing power of

computers for automatic optimization (Das et al., 2009).

2. Differential evolution algorithm - selected issues

Differential evolution algorithm is part of heuristic methods, because the goal of
optimization is not to find the exact equation describing the studied phenomenon, but to
search the available space for solutions. These solutions are constructed using random
elements. What is more, in one iteration of the algorithm several competing solutions
are created. Subsequent solutions are created using similarities to the evolutionary
mechanisms occurring in nature. These are the ones that, according to the defined
objective function, are the best. The characteristic feature of the differential evolution
algorithm is that solutions are created on the basis of real variable vectors, not vectors
coded to zero-one sequences

Since 1995 differential evolution algorithm (Storn, 1995; Storn and Price, 1997)
drew practitioners' attention in optimization due to the degree of resistance, the speed of
convergence and the accuracy of solutions for real optimization problems. The
differential evolution algorithm has defeated many algorithms, such as genetic

algorithms, evolutionary strategies and memetic algorithms (Das et al., 2016).



Suppose we have a set of objects Np vectors, each has D dimensions. In addition,
we mark Py as the current population of solutions to the optimization problem, which

was created as an initial solution or at any subsequent stage of the algorithm's operation.

Py, = (Xig), i=01,..,Np—1, 9=01,.., 9max 1)

Xi,g = (xj,i,g); ] = 0,1, ,D -1 (2)

Index g = 0,1, ..., gmax denotes the generation to which the vector belongs. Each
vector is assigned to the corresponding population index i =0,1,..., Np — 1. The
dimensions of the vector are marked by j = 0,1, ...,D — 1.

The differential evolution algorithm generates mutant vectors in the next step, which
will be marked as follows:

Pyg=i), i=01,.,Np—1 g=01, ., 0max (3)
Vig=(ig), Jj=01..,D—-1 4)

However, the vectors after crossover will be marked as follows:
Pyy=Ui,), i=01..,Np—1,  g=01, ., Gmax (5)
Ug= (i, Jj=01.,D-1 (6)

The first stage, i.e. setting the initial vectors, consists in generating starting vectors.
Initial parameters (for g=0) are set within limits that correspond to a range that is
acceptable for the intended solution. Therefore, if j-th the search task parameter has
ranges marked as X and X, ; and rand;;(0,1) means j-th realizations of a
uniform distribution from the range from 0 to 1 for i-th vector then can be determined j-

th component i-th population element, as:

x;;(0) = Xpinj + rand; j(0,1) * (Xmax,j — Xmin,j) (7)

The differential evolution algorithm searches for the global optimum in D-
dimentional continuous hyperspace. It starts with a randomly selected population Np D-
dimensional values of parameter vectors. Each vector, also known as genome /
chromosome, is a proposed solution in a multidimensional optimization issue. The next
generations of solutions in the differential evolution are marked as g = 0,1,2,...,9,9 +
1.



The vector parameters may change with the appearance of new generations,
therefore the notation for which it will be accepted, for which i-th population vector for

the current generation over time (g=g) as:

)_()i(g) = [x1,1(9),xi,2(g)' ---'xi,D(g)]T (8)

where i=1,2,...,Np.

Mutation means a sudden change in the characteristics of the chromosome gene. In
the context of evolutionary computation, a mutation means a change or disorder of a
random component. Most evolutionary algorithms simulate the effect of mutations
through the additivity of the component generated with a given probability distribution.
In the differential evolution algorithm, a uniform distribution of the vector of the form

differences was used:
A)_()rz,r3 = ()_()rz - )?r3) (9)

In the differential evolution algorithm, the mutation creates a successor vector Vi(g)
for changing the population element X;(g) in every generation or iteration of the
algorithm.

To create a vector V;(t) for each i-th element of the current population, the other

three disjoint vectors )_(’ri1 (g),iri2 (g),iri3 (g) are randomly selected from the current

population. Indexes ri,rl,ri are mutually exclusive integers selected from a range
[1,NP], which are also different from the index and the base vector. Indexes are
generated randomly for each mutated vector. Then, the difference of any two of the

three vectors is scaled by the number F and added to the third vector. In this way, we

get a vector V;(g) expressed as:
Vi(9) = X,1(9) + F.(X1(9) — X1 (9)) (10)

The mutation scheme shows different ways of differentiating the proposed solutions.
The crossover operation is used to increase the diversity of the population of
solutions. Crossing takes place after generating a donor vector through a mutation. The
algorithms of the differential evolution family use two intersection schemes -

exponential and binomial (zero-one). The donor vector lists the components with the

target vector )?l- (g) to create a trial vector



Ui(9) = [u11(9), ui2(9), i p(9)]" (11)

In exponential crossover, we first select a random integer n from range [0,D-1]. The
drawn number is the starting point for the target vector from which the components are
crossed with the donor vector. An integer L is also selected from range [1,D]. L
indicates the number of components in which the donor vector is involved. After
selection n and L trial vector takes the form:

ui(g) = {vi,j(gjz déa j={(n)p,(n+ 1>.D' o (n tL —1)p 12)
ij(9), for other j € [0,D — 1]

where the intervals denote the module modulo function D. Integer L is drawn from the
sequence [1,2,...,D] according to the following pseudocode:

L=0;

Do

{

L=L+1;

} while (rand(0,1)<CR) AND (L<D));

As a result, the probability(L > v) = (CR)”~! for any v > 0. Crossover rate (CR) is
a parameter the same as F. For each donor vector, a new set n and L must be drawn as
described above.

On the other hand, binomial crossover is carried out for each D variables each time,
when the number selected is from 0 to 1 is less than or equal to the value CR. In this
case, the number of parameters inherited from the donor has a very similar distribution
to the binomial one. This scheme can be represented in the following way:

v j g jesli (rand; j(0,1) < CR lub j = jrgna)
Yijig = Xi i o Otherwise (13)
L1,g’
where rand; ;(0,1) € [0,1] is a randomly drawn number that is generated for every j-th
of the i-th parameter of the vector. j,4nq € [1,2, ..., D] is a randomly selected index that
ensures that ﬁi,g contains at least one component from the vector Vi,g.

This is determined once for each vector in a given generation. CR is an estimate of
true probability pc, the event that the component of the sample vector will be inherited
from the parent. It may also happen that in the two-dimensional search space, three

possible test vectors can be the result of one-dimensional mating of the mutant / donor

vector V;(g) with the target vector X;(g). Trial vectors:



a) U;(g) = Vi(g) both components U;(g) inherited from the vector V;(g)

b) U,'(g) = Vi(g) one component (j=1) comes from vector V;(g), second (j=2) from
vector X;(t)

c) U;"(g) = Vi(g) one component (j=1) comes from vector X;(g), second (j=2) from

vector Vi (g)
The last stage of the differential evolution algorithm is selection, i.e. the choice

between the vector X;(g) and a newly designated test vector U;(g). The decision which
of the two vectors will survive in the next generation g+1 depends on the value of the
matching function. If the values of the matching function for the sample vector is better

than the value of the target vector, the existing vector is replaced with the new vector.
Ui(9) dia £ (Ui(9)) < f (Xi(9))
Xi(g) dia f (U:(9)) > f (Xi(9)

where £(X) is a minimized function. The selection process consists in selecting one of

Xi(g+1) = (14)

two variants. The adjustment of population members improves in subsequent
generations or remains unchanged, but never deteriorates.

CS (Candidate Solution) Measure proposed by Chou (Chou et al., 2004) is an
objective function in this study. Group centroids are determined as the average vectors
belonging to a given cluster

1 _
Nl ZjECi
The distance between two points Z, and Z, is marked as d(Z,,Z,) . Then the CS

measure can be defined as:
1w |1 -
7 Zi=1 mzzyecimax{d(zp'zy)}
! ZyECi
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The measure is a function of the ratio of the amount of intra-group dispersion and
the separation between groups. The CS measure is more effective at clusters with

different density and / or different sizes than other measures.

3. Design of the study

The database of commercial bank clients was used for the study. It has been limited
to the part of the population for which the actions taken will translate in the maximum
way into business benefits. In particular, clients meet the following criteria: individual
clients with active products, aged from 18 to 75 years, not being bank employees, with
positive marketing consent, without delays in repayment of loan products.

As for the variables used for the study, the choice was not accidental. Variables
selected for this study can be evaluated for each customer regardless of whether they
have deposit, credit or investment products. Pre-processing of data allowed to eliminate
outliers from the studied population. Due to the strong right-side skewness of the
variables, a transformation was made by adding a constant 0.001, and then their
logarithmisation. As a result, the resulting distributions of variables are more
symmetrical.

The final set of variables that took part in the study is presented below:

- ZM1 (DEPOZYTY) - Total funds on accounts and deposits in thousands of PLN

- ZM2 (INWESTYCJE) - Total funds in investment products in thousands of PLN

- ZM3 (LUDNQOSC) - number of inhabitants, based on the city from the

correspondence address and data published by the Statistics Poland

- ZM4 (KREDYTY) - amount of bank loans taken in thousands of PLN

- ZM5 (SALDO _BIK) - balance for repayment on credit products outside the

bank, based on inquiries from BIK in thousands of PLN

- ZM6 (AVG_TRN_INCOMING_ALL_3M) - average monthly income on

customer’s accounts in the last 3 months in thousands of PLN

- ZM7 (AVG_TRN_INCOMING_CLEAN_3M) - cleaned average monthly

income on customer's accounts in the last 3 months in thousands of PLN.

- ZM8 (AVG_TRN_OUTGOING_ALL_3M) - average monthly outflows from

customer accounts in the last 3 months in thousands of PLN

- ZM9 (AVG_TRN_OUTGOING _CLEAN 3M) - cleaned monthly average

outflows from customer accounts in the last 3 months in thousands of PLN.



- ZM10 (AVG_TRN_OUT_DEBIT_3M) - average monthly transaction amount
on the debit card from the last 3 months in thousands of PLN

- ZM11 (AVG_TRN_OUT_CREDIT_3M) - monthly average amount of credit
card transactions from the last 3 months in thousands of PLN

- ZM12 (WIEK_LATA) - customer's age in years

-  ZM13 (STAZ_LATA) - customer experience in years

Table 1 outlines constants used in the algorithm.

Table 1. Constants used in the study.

Constant Value Description of the constant
Lz 13 Number of variables describing the client
LC 13 Number of chromosomes
LK 15 Maximum number of clusters
SA 0.2 Constant activation of the vector
F 0.7 Mutation operator
Iterations 15 Number of iterations
CR 1 Crossover rate

Source: the author’s own calculations.

For the purpose of optimizing number of centroids dimensional matrix is created
MR k2, Where ¢ means the number of chromosomes, k means the number of clusters, z
means the number of variables. Number of variables is increased by 1. An additional
variable is used to store information on whether the cluster is active or inactive in the
given iteration (Das et al., 2008). Values for individual matrix elements are generated
according to the formula (7). An additional variable indicating focus activation is
determined based on the rule: If the randomly generated number from the range 0 to 1 is
smaller than the activation constant (SA) then the variable takes the value 0, otherwise it

takes the value 1.

4. Results of empirical analyses

The smallest value of the CS function in the fifteenth iteration was obtained for

chromosome number 3. This solution was chosen as the optimal solution.



Table 2 contains the characteristics of chromosome 3, which divided the surveyed
population of the bank's clients into 9 groups (the maximum number of groups on which

the population could be divided into 15).

Table 2. Numbers and share of groups for chromosome 3.

Group No of Clients % of total
8 92 109 45.71%
4 44 545 22.11%
6 29 047 14.41%
3 20003 9.93%
5 5476 2.72%
14 3582 1.78%
1 2839 1.41%
15 2075 1.03%
12 1832 0.91%

SUM 201 508 100.00%

Source: the author’s own calculations.

The results of grouping in Table 2 indicate that the distinguished groups are
characterized by nonequal distribution of the number of clients in groups. Group 8 is
more selective and gathers 45.71% of clients, group 4 contains 22.11% of clients, and
the third group 6 includes 14.41% of clients. The three mentioned groups gather over
80% of the surveyed population.

More detailed characteristics of the distinguished groups of clients are presented in
the table 3, which contains average values of features in individual groups. The data
presented in table 3 indicate that individual groups differ from each other. Thanks to the
knowledge of average values for particular groups, it is possible to indicate groups of
transactionally active customers (groups 14,5,6) and customers who use accounts less
frequently (group 3,8,4,1). The most-affluent group of customers with very high means

is without a doubt group number 14.

Table 3. Average values of variables ZM1-ZM13 for clusters obtained by the

differential evolution algorithm
Cluster [ ZM1[ZM2 ] ZM3 [ ZM4 [ ZM5 [ ZM6 [ ZM7 [ ZM8 [ ZM9 [ ZM10 | ZM11 [ ZM12 | ZM13

8 8 0 | 452 | 137 | 88 5 4 5 3 0 0 43 5

4 2 5 | 273 5 1 5 4 5 4 0 0 43 6
6 20 | 10 | 500 | 182 | 146 | 22 17 | 22 | 17 1 0 42 6
3 28 4 | 453 | 7 45 1 1 1 0 0 0 47 6




5 60 | 61 | 627 | 325 | O 26 | 20 | 27 | 19 0 1 41 6
14 113 | 97 | 758 | 414 | 144 | 113 | 84 | 106 | 73 2 1 42 6
1 20 | 67 | 473 | 223 | 114 | 4 3 4 2 0 0 43 6
15 24 | 48 | 321 | 264 | 10 | 10 8 7 5 0 0 41 5
12 0 2 | 131 | 7 |117 | 15 | 11 | 18 | 15 0 0 41 3

Source: the author’s own calculations.

Thanks to the use of the differential evolution algorithm to group the bank's clients,
we can get information on how many natural groups exists in a short time. Moreover,
the number of groups has been calculated, not imposed in advance. The algorithm
evaluated and compared obtained results for other candidate solutions in subsequent
iterations, recognizing according to the values of the objective function that the optimal

division of this group of customers contains 9 clusters.

5. Conclusions

The differential evolution algorithm is a promising approach to optimization, because it
generates a whole set of solutions that can be easily adapted to carry out the
optimization again. The fact of keeping a set of solutions, not only the best solution,
allows faster adaptation to new conditions using the previously made calculations. It is
resistant in terms of the choice of parameters as well as the regularity in which it finds
the global optimum. Algorithm is a direct search solution method, versatile enough to
solve problems whose objective function lacks the analytical description needed to
determine the gradient. The algorithm is also very simple to use and modify.
Evolutionary algorithms, in particular the differential evolution algorithm do well
with continuous variables when grouping clients. Customers from particular groups can
be synthetically described by the mean vector for variables used in clustering. They
allow to effectively separate customers with the same basket of products, but differing

in the level of individual variables.
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