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Abstract

Objective: The aim of the article is to present the results of grouping individual clients 
of a bank with the differential evolution algorithm.
Research Design & Methods: The research offers conclusions based on analysis of the 
bank’s customer base and deductive and inductive reasoning.
Findings: The results of the authors’ research show that the differential evolution 
algorithm correctly groups bank customers and can be used for this purpose.
Implications/Recommendations: The differential evolution algorithm is an alternative 
to the commonly used k-means algorithm. The algorithm generates several competing 
solutions in one iteration. It enables independence from starting vectors and greater 
effectiveness in searching for an optimal solution. The differential evolution algorithm 
was itself enriched with a variable that allows the optimal number of clusters to be 
selected. Each iteration contained proposed solutions (chromosomes) that were 
evaluated by the target function built on the CS measure proposed by Chou.
Contribution: The article presents the application of the differential evolution algorithm 
to group a bank’s clients.
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1. Introduction

In today’s world more and more companies are having problems with the 
effective management of available data. The gap between the amount of data 
that is generated and stored and the degree of companies’ understanding 
is constantly widening. According to a survey conducted by IBM among 
representatives of the largest banks, over 40% of them have problems with 
an excess of information and the lack of appropriate tools for analysing 
it (Giridhar et al. 2011). 

Grouping methods are effective in describing populations. Many authors 
have studied these methods (Everitt et al. 2011, Feoktistov & Janaqi 2004, 
Gan, Ma & Wu 2007).

Classical grouping algorithms have two major disadvantages:
1. They easily fall into local optima in multidimensional spaces that have 

multimodal objective functions,
2. The efficiency of searching for a solution depends very much on the 

start vectors.
Grouping methods are known as methods without a  supervisor, while 

most traditional algorithms require a priori knowledge of the number of 
clusters, which means that this is not a method without the interference of an 
outsider. On the other hand, in many practical applications it is impossible 
to provide even an approximate number of groups for an unknown data set.

The limitations of classical grouping methods, including the k-means 
algorithm, led the researchers to search for new, more effective grouping 
methods. One of the development trajectories for grouping algorithms has 
been to treat them as an optimization problem. Over time, the paradigm 
of evolutionary computation – the relationship between optimization and 
biological evolution – has evolved. Evolutionary calculations use the power 
of natural selection and allow the computing power of computers to be used 
for automatic optimization (Das, Abraham & Konar 2009).

The first part of the article presents selected issues related to the 
differential evolution algorithm. Next, the assumptions of the study and 
the steps taken to prepare the data are described. Selected results for the 
study are then outlined. In the final part of the article, the authors indicate 
possible directions for further research in this area.
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2. Differential Evolution Algorithm – Selected Issues

The differential evolution algorithm is part of heuristic methods because 
the goal of optimization is not to find the exact equation describing the 
studied phenomenon, but to search the available space for solutions. 
These solutions are constructed using random elements. What is more, in 
one iteration of the algorithm several competing solutions are created. 
Subsequent solutions are created using similarities to the evolutionary 
mechanisms occurring in nature. These are the ones that, according to the 
defined objective function, are the best. The characteristic feature of the 
differential evolution algorithm is that solutions are created on the basis of 
real variable vectors, not vectors coded to zero-one sequences (Das, Mullick 
& Suganthan 2016).

Since 1995 the differential evolution algorithm (Storn 1995, Storn & Price 
1997) has drawn the attention of optimization practitioners due to the degree 
of resistance, the speed of convergence and the accuracy of solutions for real 
optimization problems. The differential evolution algorithm has defeated 
many algorithms, such as genetic algorithms, evolutionary strategies and 
memetic algorithms (Das, Mullick & Suganthan 2016).

Suppose we have a set of objects Np vectors, each of which has D   
dimensions. In addition, we mark PX as the current population of solutions 
to the optimization problem, which was created as an initial solution or at 
any subsequent stage of the algorithm’s operation (Das, Abraham & Konar 
2009).

 P X , , , , , , , , ,i Np g g0 1 1 0 1… – …, ,X maxg i g= = =^ h  (1)

 X , , , , .x j D0 1 1… –, , ,i g j i g= =^ h  (2)

Index g = 0, 1, …, gmax denotes the generation to which the vector belongs.  
Each vector is assigned to the corresponding population index i = 0, 1, …, 
Np – 1. The dimensions of the vector are marked by j = 0, 1, …, D – 1.

The differential evolution algorithm generates mutant vectors in the next 
step, which will be marked as follows (Das, Abraham & Konar 2009):

 P V , , , , , , , , ,i Np g g0 1 1 0 1… – …, ,V maxg i g= = =^ h  (3)

 V , , , , .j D0 1 1… –, , ,i g j i g= =v^ h  (4)

However, the vectors after crossover will be marked as follows:

 P U , , , , , , , , ,i Np g g0 1 1 0 1… – …, ,U maxg i g= = =^ h  (5)
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 U , , , , .u j D0 1 1… –, , ,i g j i g= =^ h  (6)

The first stage, i.e. setting the initial vectors, consists in generating 
starting vectors. The initial parameters (for g = 0) are set within limits that 
correspond to a range that is acceptable for the intended solution. Therefore, 
if j-th the search task parameter has ranges marked as xmin, j and xmax, j and 
randi, j (0, 1) means j-th realizations of a uniform distribution from the range 
from 0 to 1 for i-th vector, then  j-th component i-th population element can 
be determined as (Das, Abraham & Konar 2009):

 ,x x rand x x0 0 1 –, , , , ,min max mini j j i j j j= + $^ ^ ^h h h. (7)

The differential evolution algorithm searches for the global optimum 
in D-dimensional continuous hyperspace. It starts with a randomly 
selected population Np D-dimensional values of parameter vectors. Each 
vector, also known as a genome/chromosome, is a proposed solution in 
a multidimensional optimization issue. The next generations of solutions in the  
differential evolution are marked as g = 0, 1, 2, …, g, g + 1.

The vector parameters may change with the appearance of new 
generations, therefore the notation for which it will be accepted, for which 
i-th population vector for the current generation over time (g = g) as (Das, 
Abraham & Konar 2009):

 , , , ,g x g x g x g…, , ,i i D
T

1 1 2=Xi ^ ^ ^ ^h h h h6 @  (8)

where i = 1, 2, …, Np.

Mutation means a sudden change in the characteristics of the 
chromosome gene. In the context of evolutionary computation, a mutation 
means a change or disorder of a random component. Most evolutionary 
algorithms simulate the effect of mutations through the additivity of 
the component generated with a given probability distribution. In the 
differential evolution algorithm, a uniform distribution of the vector of the 
form differences was used (Das, Abraham & Konar 2009):

 D .–,r r r r2 3 2 3=X X X^ h  (9)

In the differential evolution algorithm, the mutation creates a successor 
vector gVi ^ h for changing the population element gX i ^ h in every generation 
or iteration of the algorithm.

To create a vector  tVi ^ h  for each i-th element of the current population, 
the other three disjoint vectors ,,g g gr ri i i

1 2 3X X Xr^ ^ ^h h h are randomly 
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selected from the current population. Indexes , ,r r ri i i
1 2 3 are mutually exclusive 

integers selected from a range [1,  Np], which are also different from the 
index and the base vector. Indexes are generated randomly for each mutated 
vector. Then, the difference of any two of the three vectors is scaled by the 
number F and added to the third vector. In this way, we get a vector i gV ^ h  
expressed as (Das, Abraham & Konar 2009):

 .g g F g g–i r ri i i
1 2 3= +V X X X$ r^ ^ ^ ^ ^h h h hh  (10)

The mutation scheme shows different ways of differentiating the proposed 
solutions.

The crossover operation is used to increase the diversity of the population 
of solutions. Crossing takes place after generating a donor vector through 
a mutation. The algorithms of the differential evolution family use two 
intersection schemes – exponential and binomial (zero-one). The donor 
vector lists the components with the target vector giX ^ h to create a trial 
vector:

 , , , .g u g u g u g…, , ,i i i D
T

1 1 2=U ^ ^ ^ ^h h h h6 @  (11)

In exponential crossover, we first select a random integer n  from range 
[0, D – 1]. The drawn number is the starting point for the target vector from 
which the components are crossed with the donor vector. An integer L is 
also selected from range [1, D]. L indicates the number of components in 
which the donor vector is involved. After selection n and L, the trial vector 
takes the form (Das, Abraham & Konar 2009):

 , for otherx j ! ,u g g D
g n n n L

0 1
1 1
–

–
,

,

,
i j

i j

i j D D D=
+ +for , , ,v j …=^ ^

^h h
h 6 @*  (12)

where the intervals denote the module modulo function D. Integer L is  
drawn from the sequence [1, 2, …, D] according to the following pseudocode:
L = 0;
Do
{
L = L + 1;
} while (rand(0, 1) < CR) AND (L < D));

As a result, the probability L v CR v 1–$ =^ ^h h  for any v > 0. The crossover 
rate (CR) is a parameter the same as F. For each donor vector, a new set 
n and L must be drawn as described above.
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On the other hand, binomial crossover is carried out for each D variable 
each time, when the number selected from 0 to 1 is less than or equal to the 
value CR. In this case, the number of parameters inherited from the donor 
has a very similar distribution to the binomial one. This scheme can be 
represented in the following way (Das, Abraham & Konar 2009):

 u , ,i j g=* otherwisex
,rand CR j jor0 1

, ,

, , ,

i j g

i j g i j rand# =,v if ^ ^ h h
 (13)

where , ,rand 0 1 0 1,i j !^ h 6 @ is a randomly drawn number that is generated for 
every j-th of the i-th parameter of the vector. , , ,j D1 2 …rand ! 6 @ is a randomly 
selected index that ensures that ,i gU  contains at least one component from 
the vector V .,i g

This is determined once for each vector in a given generation. CR is an 
estimate of true probability pCR the event that the component of the sample 
vector will be inherited from the parent. It may also happen that in the two- 
-dimensional search space, three possible test vectors can be the result of 
one-dimensional mating of the mutant/donor vector gVi ^ h with the target 
vector gX i ^ h.  Trial vectors:

a) ig g=U Vi ^ ^h h both components gUi ^ h inherited from the vector ,i gV ^ h
b) ig gi =U Vl^ ^h h one component ( j = 1) comes from vector ,gVi ^ h  the 

second ( j = 2) from vector ,X ti ^ h
c) g g=U Vi i

m^ ^h h one component ( j = 1) comes from vector ,X gi ^ h  the 
second ( j = 2) from vector .gVi ^ h

The last stage of the differential evolution algorithm is selection, i.e. the 
choice between the vector  gX i ^ h  and a newly designated test vector  .giU ^ h   
The decision which of the two vectors will survive in the next generation 
g + 1 depends on the value of the matching function. If the values of the 
matching function for the sample vector are better than the value of the 
target vector, the existing vector is replaced with the new vector (Das, 
Abraham & Konar 2009). 

 
for
for

g
g f g f g
g f g f g

1
>i

#
+ =X

X U X
U U X

i
i i

i i i^ ^
^

^
^
^
^

^
^
^
^h h

h
h
h
h
h

h
h
h
h*  (14)

where f X^ h is a minimized function. The selection process consists in 
selecting one of two variants. The adjustment of population members 
improves in subsequent generations or remains unchanged, but never 
deteriorates.



Application of the Differential Evolution Algorithm… 15

The CS (Candidate Solution) measure proposed by Chou (Chou, Su 
& Lai 2004) is an objective function in this study. Group centroids are 
determined as the average vectors belonging to a given cluster

 .m N Z1
i i

i

=
C!Z

j

j

|  (15)

The distance between two points Z p and Z y is marked as , .d Z Zp y^ h   
Then the CS measure can be defined as: 
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The measure is a function of the ratio of the amount of intra-group 
dispersion and the separation between groups. The CS measure is more 
effective at clusters with different density and/or different sizes than other 
measures. 

3. Design of the Study

A database of a commercial bank’s clients from Europe was used 
for the study. It was limited to that part of the population for which the 
actions taken will translate in the maximum way into business benefits. In 
particular, clients meet the following criteria: individual clients with active 
products as on 1 March 2017, aged between 18 and 75 years, who are not 
bank employees, with positive marketing consent, and without delays in the 
repayment of loan products1.

As for the variables used for the study, the choice was not accidental. 
The variables selected for the study can be evaluated for each customer 
regardless of whether they have deposit, credit or investment products. 
By pre-processing data it was possible to eliminate outliers from the 
studied population. Due to the strong right-side skewness of the variables, 
a transformation was made by adding the constant 0.001, and then their 

1 The authors are not permitted to disclose the exact name of the bank which supported the data 
for this study.
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logarithmisation. The resulting distributions of variables are thus more 
symmetrical.

The final set of variables used in the study is presented below: 
– ZM1 (DEPOZYTY) – total funds on accounts and deposits in thousand 

PLN,
– ZM2 (INWESTYCJE) – total funds in investment products in thousand 

PLN,
– ZM3 (LUDNOSC) – number of inhabitants, based on the city from the 

correspondence address and data published by Statistics Poland,
– ZM4 (KREDYTY) – amount of bank loans taken in thousand PLN,
– ZM5 (SALDO_BIK) – balance for repayment on credit products outside 

the bank, based on inquiries from BIK in thousand PLN,
– ZM6 (AVG_TRN_INCOMING_ALL_3M) – average monthly income on 

customer accounts in the last 3 months in thousand PLN,
– ZM7 (AVG_TRN_INCOMING_CLEAN_3M) – cleaned average monthly 

income on customer accounts in the last 3 months in thousand PLN,
– ZM8 (AVG_TRN_OUTGOING_ALL_3M) – average monthly outflows 

from customer accounts in the last 3 months in thousand PLN,
– ZM9 (AVG_TRN_OUTGOING_CLEAN_3M) – cleaned monthly average 

outflows from customer accounts in the last 3 months in thousand PLN,
– ZM10 (AVG_TRN_OUT_DEBIT_3M) – average monthly transaction 

amount on the debit card from the last 3 months in thousand PLN,
– ZM11 (AVG_TRN_OUT_CREDIT_3M) – average monthly amount of credit  

card transactions from the last 3 months in thousand PLN,
– ZM12 (WIEK_LATA) – customer age in years,
– ZM13 (STAZ_LATA) – customer experience in years.
Table 1 shows the constants used in the algorithm.

Table 1. Constants Used in the Study

Constant Value Description of Constant
LZ 13 number of variables describing the client
LC 13 number of chromosomes
LK 15 maximum number of clusters
SA 0.2 constant activation of the vector
F 0.7 mutation operator

Iterations 15 number of iterations
CR 1 crossover rate

Source: authors’ own calculations.
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For the purpose of optimizing the number of centroids, a dimensional 
matrix MRc,k,z is created, where c means the number of chromosomes, 
k means the number of clusters, and z means the number of variables. 
The  number of variables is increased by 1. An additional variable is used 
to store information on whether the cluster is active or inactive in the given 
iteration (Das, Abraham & Konar 2008). The values for individual matrix 
elements are generated according to formula (7). An additional variable 
indicating focus activation is determined on the basis of the following rule: 
if the randomly generated number from the range 0 to 1 is smaller than the 
activation constant (SA), then the variable takes the value 0, otherwise it 
takes the value 1.

4. Results of Empirical Analyses

The smallest value of the CS function in the fifteenth iteration was 
obtained for chromosome number 3. This solution was chosen as the optimal 
solution.

Table 2 presents the characteristics of chromosome 3, which divided 
the surveyed population of the bank’s clients into 9 groups (the maximum 
number of groups into which the population could be divided was 15).

Table 2. Numbers and Share of Groups for Chromosome 3

Group Number of Clients % of Total
8 92,109 45.71
4 44,545 22.11
6 29,047 14.41
3 20,003 9.93
5 5,476 2.72
14 3,582 1.78
1 2,839 1.41

15 2,075 1.03
12 1,832 0.91

Sum 201,508 100

Source: authors’ own calculations.

The results of the grouping in Table 2 indicate that the distinguished 
groups are characterized by nonequal distribution of the number of clients 
in groups. Group 8 is more selective and includes 45.71% of clients, group 4 
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contains 22.11% of clients, and group 6, the third group – 14.41% of 
clients. The three mentioned groups account for over 80% of the surveyed 
population.

More detailed characteristics of the distinguished groups of clients 
are presented in Table 3, which contains the average values of features in 
individual groups. The data presented in Table 3 indicate that individual 
groups differ from each other. Thanks to knowing the average values 
for particular groups, it is possible to indicate groups of transactionally 
active customers (groups 14, 5 and 6) and customers who use accounts less 
frequently (groups 3, 8, 4 and 1). The most affluent group of customers with 
very high means is without a doubt group 14.

Thanks to the use of the differential evolution algorithm to group the 
bank’s clients, we can, in a relatively short period of time, get information on 
how many natural groups exist. Moreover, the number of groups is calculated 
by the algorithm, not imposed in advance. The algorithm evaluated and 
compared the obtained results for other candidate solutions in subsequent 
iterations, recognizing, according to the values of the objective function, 
that the optimal division of this group of customers contains 9 clusters.

5. Conclusions

The differential evolution algorithm is a promising approach to 
optimization because it generates a whole set of solutions that can be easily 
adapted to carry out the optimization again. The fact that a set of solutions 
is retained, and not just the best solution, allows faster adaptation to new 
conditions using the previously made calculations. It is resistant in terms of 
the choice of parameters as well as the regularity in which it finds the global 
optimum. The algorithm is a direct search solution method, versatile enough 
to solve problems whose objective function lacks the analytical description 
needed to determine the gradient. The algorithm is also very simple to use 
and modify.

Evolutionary algorithms, in particular the differential evolution algorithm, 
do well with continuous variables when grouping clients. Customers from 
particular groups can be synthetically described by the mean vector for 
variables used in clustering. Customers with the same basket of products, but 
differing in the level of individual variables, can be effectively separated.

The results of the study show that the differential evolution algorithm 
can be successfully applied to group retail banks’ clients. Further research 
might be conducted with an extended list of variables i.e. those with a wider 
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window of observation (maximum balance in a deposit product in the last 
6 months, maximum balance in an investment product in the last 6 months). 
It  would also be advisable to analyse exclusively deposit clients or credit 
clients with specific variables calculated and populated for those groups.
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