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WHEN DO OPTIMA CONVERGE  
TO OPTIMUM?*

Abstract

In this paper we consider the problem of the convergence of optima in approximated 
problems to the optimum of limiting problem. We recall the concept of  G-convergence, 
which is crucial in optimisation problems. We show its importance and provide a list 
of theorems describing its properties. Using described tools we derive the conditions 
under which an approximation of the parameters of the Ramsey model with vanishing 
absolute error of approximation gives the explicite formula for the time-varying 
consumption per capita, which leads to “almost”-maximisation of the CRRA utility 
functional.

Keywords: Gamma-convergence, Ramsey model, convergence of optima, stability 
of optimal paths.
JEL Classification: C02, C62.

1. Introduction

There are several types of convergence of sequences of functions. 
The  usual and well-known types are pointwise and uniform convergence. 
In  this paper we present the basis of the theory of G-convergence of 
sequence of functions. This kind of convergence can be expressed also in 
terms  of  Kuratowski convergence of epigraphs of those functions (limit of 
sequence of closed sets).

G-convergence is a crucial concept in optimisation problems. It is worth 
emphasising that it is not obvious that if we have a sequence of functions 
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– or functionals (Attouch 1984), possibly profit, cost or utility functionals – 
each of which possesses an extremum at some point, then the limit of 
functions has an extremum in the limiting point of the optima sequence. 
We start our analysis in the second section with an elementary example that 
shows the opposite effect for a pointwise limit of sequence of functions. 
In the next part of the paper we formulate a formal definition of the G-limit 
and discuss the theorems linking it to other types of limits of sequence of 
functions.

The paper closes with an analysis of the standard Ramsey model, in 
which we consider a disturbance of coefficients. We provide an answer to the 
natural question: in what circumstances does the optimal consumption path 
in a “disturbed” problem approximate the optimal consumption path from 
the “ideal” model and under what conditions does blanking the coefficients 
disturbance lead to the non-disturbed optimum.

2. The Idea of Γ-convergence – an Example

G-convergence is one of the most important tools of optimisation 
theory, which assures the convergence of both minima and minimisers 
to, respectively, the minimum and minimiser of the limiting functional. 
The problem of convergence of optima was first considered by E. De Giorgi 
(1984), who introduced and developed the concept of G-convergence. 
In  parallel, mathematicians studied the problem of convergence of sets, 
also in optimisation problems. There was the question of how to extend 
the Hausdorff metric, defined for nonempty and compact (therefore, in Rn:  
closed and bounded) sets, to the case of closed sets. Kazimierz Kuratowski 
was the first to prepare a fundamental description of this convergence and 
showed the equivalence between G-convergence of functionals and the 
Kuratowski convergence of their epigraphs (Kuratowski 1961).

We are now going to present a brief outline of both approaches. First, we 
give a definition of epigraph and – using this intuitive geometric approach – 
discuss an example illustrating the fundamental role of G-convergence.

Definition 1.  Let function :f X R"  be given, where X is a topological 
space. The epigraph of function f is the set:

: , : .epi f x v X v f xR#! $=^ ^ ^h h h" ,
Geometrically, epigraph of function is the part of Cartesian product 

X R#  above the graph of f. For a lower semicontinuous function f its graph 
is a closed subset of the Cartesian product .X R#
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Example 1. The epigraph of function f x x x x3 4– –4 3= +^ h  is presented in 
Figure 1.

–10

–5
0–0.5 0.5 1 1.5 2 2.5 3 3.5 4 4.5–1–1.5–2–2.5

5

10

15

20

25

Fig. 1. The Epigraph of Function f
Source: author’s own elaboration.

Example 2. Consider the following sequence of functions :n N!^ h

f xn =^ h
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Their graphs (for exemplary values of parameter n) are presented in 
Figure 2.

It is easy to observe that each function fn possess the minimum at point 
,x n

1–n =  and the minimal value is .y f x n1 1–n n n= = +^ h  Therefore, calculating 

trivial limits one obtains that limx x 0n n= =" 3+  and ,limy y 1–n n= =" 3+  

being respectively the limits of minimisers and of minima.
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Consider now the limit of sequence (fn), in two approaches. The pointwise 
limit is obviously the function:
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Fig. 2. Graphs of Functions fn

Source: author’s own elaboration.

However, if we consider the epigraphs of functions fn, it is easy to observe 
that they converge to the set in Figure 3.
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Fig. 3. The Kuratowski Limit of Sequence  epi fn n N!^ ^ hh
Source: author’s own elaboration.
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Therefore, the function whose epigraph is represented by this limiting 
set is:
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Since ,f f0 0epi p=Y^ ^h h  we have that .f fepi p=Y

Let us have a look at the variational properties of both limit 
functions, fp and fepi. The minimal value of fp is attained at xp = 1 and 

,miny f x 0,p x p1 1–= =! ^ h6 @  while the minimiser and minimal value for fepi are 
xepi = 0 and .miny f x 1–,xepi epi1 1–= =! ^ h6 @  Notice that the last two coincide 
with the limits x and .y  Therefore, function fepi has good variational 
properties: it is the limit of our sequence (fn) – more precisely: the G-limit of 
this sequence; the limit of minimisers (xn) is a minimiser of the limit fepi and 
finally the limit of minima (yn) is in fact the minimum of the limit fepi.

The observed phenomenon is not incidental. In fact, it was the reason to 
define G-convergence. Those properties are crucial in optimisation problems. 
They assure the stability of optima and justify the usage of numerical 
methods, which – by their nature – deal with approximate problems and face 
the issue of propagation of computational errors.

While studying the last example, the natural question arises: how can 
the G-limit of sequence of functions be formally defined and how is it related 
to the pointwise and uniform limit of sequence of functions (which are not 
sufficient in those kinds of problems)? Also, when discussing example 1, 
we used the intuitive concept of the epigraphical limit of the sequence (fn) 
and only mentioned its relation to the G-limit. In the next section, all those 
concepts are formalised.

3. Γ-limit and Links to Other Types of Limits

In this section, we formulate the necessary definitions and theorems on 
epigraphical convergence. They are cited from G. Dal Maso (1993).

In what follows, we are going to denote by X a topological space1 and 
:f X Rn "  (where R R , !3= " ,  is the extended real line) a sequence of  

1 In the definitions and theorems, we consider X to be a topological space, metric space or 
topological vector space. These are mathematical structures, allowing usage of different operations 
on the elements of set X, like measuring the distance or operating on vectors, respectively. For 
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functions defined in it, while N(x) denotes the family of open neighbourhoods 
of the point x.

Definition 2 (Dal Maso 1993, p. 38). The lower and upper G-limits of the 
sequence (fn) are defined as follows:

: : ,lim sup lim infinf inff f x f y– n n
U N x

n y U nlow – Γ= =
" "3 3

!
!

Γ ^ ^
^

h h
h

: : .lim sup lim infsup supf f x f y–
n

n
U N x n y U nupp – Γ= =

" "3 3!
!

Γ ^ ^
^

h h
h

If : ,f f flow upp– –= =Γ Γ Γ  then sequence (fn) is said to be G-convergent to fG 
and function fG is G-limit of it.

We define now the lower and upper Kuratowski limits of the family of 
sets (net), ,E Xn 1^ h  when .n"3

Definition 3 (Dal Maso 1993, p. 41). The lower and upper Kuratowski 
limits of a sequence of sets are, respectively:

:lim infx K E U N x k h k U E– Nn n h+ +6 7 6 Q! ! ! $ =
"3

Y^ h
: .lim supx K E U N x k h k U E– N

n
n h+ +6 Q6 7! ! ! $ =

"3
Y^ h

Clearly, .limlim inf supK K EE –– n nn n1 "" 33  If the converse inclusion 
holds as well, we denote the resulting set by : limE K E– n n= "3  and call it 
the Kuratowski limit of (En) when .n"3  Therefore, (En) converges to some 
set E as ,n"3  iff:

.limlim sup infK K EE E –– n n
n

n1 1
"" 33

The next theorem establishes the relation between G-convergence of 
sequence of functions and the Kuratowski convergence of their epigraphs.

Theorem 1 (Dal Maso 1993, p. 44). Let flow – Γ and fupp – Γ be respectively 
the lower and upper limits of a sequence of functions (fn). Then:

,lim supepi f K epi f–low
n

n– =
"3

Γ^ ^h h
.lim infepi f K epi f– n nupp – =

"3Γ^ ^h h

Therefore, (fn) G-converges to fG if and only if .limepi f K epi f– n n= "3Γ^ ^h h

the sake of our further applications, the reader may consider X Rn=  with standard metric, which 
satisfies all the necessary requirements of each case.
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We are ready to formulate the theorem which describes the fundamental 
role of G-convergence in optimisation theory. This is particular case of the 
more general theorem 7.12 in Dal Maso (1993, p. 73).

For a function :f X R"  denote by M(f) the set of its minimisers (possibly 
empty), i.e.:

: : .infM f x X f f yx
y X

!= =
!

^ ^ ^h h h% /

Theorem 2. Assume that sequence (fn) is G-convergent to fG . Then:
a) ,lim infK M f M f– n n 1"3 Γ^ ^h h

i.e. any limit of a sequence of minima yn is a minimiser of fG ;
b) if ,limK M f– n n Q="3 Y^ h  then M f Q=C Y^ h  and min f xx X =! Γ ^ h

,lim inf f xn x X n= "3 !^ ^ hh
i.e. if there exists a limit of a sequence of minima yn, then function fG has 
at least one minimiser (this limit itself, maybe also some other) and the 
minimum of fG is approximated by minima yn;

c) if fG is a proper function (not identically 3+ ), then:

,lim supM f K M f–
n

n1
"3

Γ^ ^h h

i.e. if fG has at least one finite value, then any minimiser of this function is 
the limit of a sequence of minimisers yn.

As we observed in example 1, both pointwise and G-limits of the 
considered sequence of functions existed. In general, these are independent 
concepts and it may happen that one of those limits exists while the other 
does not. However, there are some situations when they both do exist and 
coincide. Below we cite the theorems from Dal Maso (1993) describing most 
important cases, usual in economic modelling.

The subscript “p” is related to pointwise limit.

Theorem 3
a) f flow low p– –#Γ  and .f f pupp upp– –#Γ

In particular, if both the G-limit fG and pointwise limit fp exist, then .f fp#Γ
b) If each function fn is continuous and sequence (fn) converges 

uniformly2 to a function f, then f is continuous and f = fG .
c) If (fn) is an increasing sequence of continuous functions, then 

.supf fnn N= !Γ

2 Having (X, d) a metric space with distance function d, sequence of functions fn: X R"  is 
uniformly convergent to function : iff , .lim supf X d f x f x 0R x X nn" ="3 ! ^ ^ ^h hh
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d) Let X be normed vector space. If (fn) is a sequence of equi-bounded3 
in a neighbourhood of a point x X!  and convex functions, then – provided 
the sequence (fn) is convergent – fG = fp. 

The next theorem determines when the properties of convexity and 
homogeneity are inherited by G-limits.

Theorem 4. Let X be a topological vector space over the real numbers. 
Then:

a) if (fn) is a sequence of convex functions, then fupp – G is a convex 
function. In particular, for G-convergent sequence the G-limit fG is convex;

b) if (fn) is a sequence of positively homogeneous of degree p functions4, 
then both flow – G and fupp – G are positively homogeneous of degree p. 
In  particular, if the sequence (fn) G-converges to fG, then fG is positively 
homogeneous of degree p.

Notice that due to the obvious facts:
1) if function f attains minimum at a point x0, then function –f attains 

maximum at this point;
2) if function f is increasing in a set A, then function –f is decreasing in 

this set;
3) if function f is convex in a set X, then function –f is concave in the same 

set;
4) lim sup lim inff x f x– –n n n n=" "3 3^ ^ ^hh h and lim inf f x–n n ="3 ^ ^ hh

;lim sup f x– n n= "3 ^ h
all the presented theorems have their corresponding formulations for 
functions possessing symmetric properties.

4. Household’s Utility Optimisation

We consider now the household optimisation problem of the Ramsey 
model (Barro & Sala-i-Martin 2004), in which the parameters are given 
with some approximation. In what follows, all the introduced functions are 
smooth.

The households are assumed to be identical, so they are characterised by 
the same preferences, the wage rate w, the rate of returns r (for simplicity 

3 A family (or sequence) of functions ( fn), fn : ,X R"   is equi-bounded iff there exists a constant  

M > 0, which bounds any function, i.e. for any : .x X f x M<n! ^ h
4 Having X a vector topological space, function :f X R"  is positively homogeneous of degree p iff 
for any t > 0 and any x X!  it holds that f(tx) = tpf(x).
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assumed to be constant, may be understood as the average) and the same 
assets per person. The population grows at the rate n > 0, so L(t) = L(0) · ent. 
In further calculations, the initial size of population L(0) is normalised to 1. 

C(t) denotes the total consumption at time t and :c t L t
tC

=^ ^
^h h
h consumption 

per capita. We consider CRRA utility, i.e.:

 , ,u c c
1

1 0 1–
–1–

!θ θ=
θ

^ ^h h (1)

so it satisfies the usual monotonicity and concavity assumptions and meets 
Inada conditions. Therefore, the households face the problem of choosing 
such a consumption path c(t) to maximise the intertemporal utility functional 
(with discount rate ρ > n):

 ,U c u c t e dttn

0

– –=
3

ρ^ ^ ^hh h6 @ #  (2)

taking into account the budget constraints and .c t 0$^ h  The budget 
constraints are expressed by the dynamics of a household’s assets per person 
a(t):

 .dt
da r n a t t c t– –ω= +^ ^ ^ ^h h h h  (3)

Ruling out the chain-letters possibilities we do require that the present 
value of assets is asymptotically nonnegative:

 .lim a t e 0
t

r n– –$ $
"3
^ ^h h  (4)

Thanks to transversality conditions and the Pontryagin Maximum 
Principle we can derive the optimal consumption path:

 .expc t c r t0 1 –*
θ ρ=^ ^ a ^h h h k  (5)

For the derivation of the constraints and a detailed solution of the model, 
see R. J. Barro and X. Sala-i-Martin (2004, pp. 88–93).

Consider now the Ramsey model with “disturbed” parameters. The rates 
r, n, ρ and parameter q are given with some approximation, which may 
depend on measurement rules. Denote those approximate values by re, 
ne, ρe and qe, respectively. Assume that for any e, ρe > ne,  and , .0 1!θε ^ h  
Increasing the accuracy of measurement, the approximate values be tend 
to actual value b for , , , .b r n! ρ θ" ,  Having those approximate values be 
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the household’s maximisation problem is now to maximise the functional 

,U c u c t e dtn t

0

– –=
3

ε ε
ρε ε^ ^ ^hh h6 @ #  where u c c

1
1

–
–1–

θ=ε
ε

θε^ h  subject to the 

analogous constraints to (3) and (4). Repeating the reasoning for each e > 0,  
we obtain the optimal solution: the function .expc t c r t0 1 –*

θ ρ=ε
ε

ε ε^ ^ c ^h h h m  

The natural questions now are whether or not c*
ε converges to c* and U c*

ε ε6 @
converges to ,U c*6 @  i.e. whether or not the optimal path c*

ε approximates the 
actual optimal path c* and .U c U c* *.ε ε6 6@ @  To give the answer, we prove the 
following theorem:

Theorem 5. If , ,lim lim limr r n n0 0 0ρ ρ= = =" " "ε ε ε ε ε ε  and ,lim e0θ θ="ε  
then Ue converges to U uniformly.

Proof. We will show first that the uniform limit of (ue) is function u. 
Estimating the distance between ue and u, we get:
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Notice that if ,"θ θε  then both terms in the numerator tend to zero, so 
.u uCε  We are ready to prove the uniform convergence of operators Ue to U:
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Due to the uniform convergence of (ue) and convergence of sequences 
(ne) and (ρe), the integrand tends to zero function, so ,U UCε  which proves 
the theorem.

Theorem 6. The functional U is the G-limit of the sequence Ue when .0"ε  
Theorem 6 is the immediate consequence of theorems 5 and 3b.

Corollary. If parameters r, n, ρ and q are given with an approximation 
whose absolute error tends to zero, then the corresponding consumption 
path approximates the optimal “theoretical” consumption path and the 
obtained value of utility is close to the actual maximum.

5. Conclusions and Further Research

The aim of the study reported in this paper is two-fold. Firstly, we 
want to emphasise the role of G-convergence in optimisation problems, 
and in particular in economic modelling. Secondly, we show that using an 
approximation of the parameters of the Ramsey model with vanishing 
absolute error of approximation it is possible to give the explicite formula 
for the time-varying consumption per capita, which leads to “almost”- 
-maximisation of the CRRA utility functional.

In the author’s opinion it would be interesting to consider a similar 
problem of convergence of optimal path in the more general Ramsey model, 
where the rates are functions of time. Then we would enquire what kind 
of time-dependence of rate of returns, wages, discount rate or preference 
parameter still allows for the maximum of the utility functional and what 
kind approximation of them gives an approximation of optimal paths.
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Abstract

Kiedy optima są zbieżne do optimum?

W artykule podjęto zagadnienie zbieżności ciągu optimów zagadnień przybliżo-
nych do optimum zagadnienia granicznego. Oparto się na  G-zbieżności – kluczowym 
pojęciu w teorii optymalizacji. Wykazano istotność jej stosowania i podano twierdzenia 
opisujące jej najważniejsze własności. Wykorzystując wprowadzone narzędzia, wypro-
wadzono warunki, przy których przybliżenie parametrów modelu Ramseya (przy wyga-
szanym błędzie bezwzględnym aproksymacji) pozwala na podanie explicite przepisu na 
zmienną w czasie ścieżkę konsumpcji per capita, które prowadzi do bliskich maksimum 
wartości funkcjonału użyteczności typu CRRA.

Słowa kluczowe: Gamma-zbieżność, model Ramseya, zbieżność optimów, stabilność 
ścieżek optymalnych.


