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Abstract 

Quantiles of income distributions are often applied to the estimation of various inequality, poverty and 

wealth characteristics. They are traditionally estimated using the classical quantile estimator based on a 

relevant order statistic. The main objective of the paper was to compare the classical, Huang-Brill and 

Bernstein estimator for these measures from the point of view of their statistical properties. Several 

Monte Carlo experiments have been conducted to assess biases and mean squared errors of income 

distribution characteristics for different sample sizes under the lognormal or Dagum type-I models. The 

results of the experiments have been used to the estimation of inequality, poverty and wealth  measures in 

Poland by macroregion on the basis of the micro data coming from the Household Budget Survey 2014.   
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1. Introduction  

 Statistical measures based on quantiles are frequently applied to the analysis of 

income distribution as they comprise many popular inequality and poverty indices and 

indicators. Simple dispersion ratios, defined as the ratios of the income of the richest 

quantile over that of the poorest quantile, usually utilize deciles and quintiles, but in 

principle, any quantile of income distribution can be used. A version of the decile 

dispersion ratio using the ratio of the 10th over the 40th percentile which has recently 

become popular is the so called Palma ratio. Another popular inequality measure based 

on deciles is the coefficient of maximum  equalisation, also known as the Schutz index 

or the Pietra ratio. Contrary to the well-known Gini ratio, the quantile-based dispersion 

ratios are focused on income differences located in the tails of the distribution rather 

than in the middle groups. They can be used as supplementary to overcome the 
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shortcoming of the Gini index of being proportionally oversensitive to changes in the 

middle of the distribution. More sophisticated measures of income inequality have been 

constructed using differences (or ratios) between  population and income quantiles. 

Probably the first of such measures was the Holme’s coefficient standardized by 

Bortkiewicz, which is based on the quantiles of order 0.5.  The concentration curve and 

corresponding synthetic concentration coefficient proposed by Zenga, are also defined 

in terms of quantiles of a size distribution and the corresponding quantiles of the first-

moment distribution.   

 The quantile-based inequality measures are traditionally estimated using the 

classical quantile estimator based on a relevant order statistic.  In many applications 

these estimates are presented without any information about their precision, which must 

be the basis for further statistical inference e.g. statistical hypothesis testing and interval 

estimation. The problem can be neglected to some extent when we consider the overall 

population or the sample size is large enough to apply the asymptotic theory; one should 

be conscious however, that for heavy-tailed income distributions the sufficient sample 

size can be very large indeed.  For some population divisions (by age, occupation, 

family type or geographical area) these simple methods have been proven seriously 

biased and the estimation errors were found to be far beyond the values that can be 

accepted by social policy-makers for making reliable policy decisions (Jędrzejczak, 

2015).  

 The paper addresses the problem of statistical properties of the estimators of popular 

inequality measures based on quantiles. After a brief description of such measures 

(section 2), selected quantile estimators have been introduced (section 3). Section 4 

comprises the results of Monte Carlo experiments which have been conducted to assess 

biases and mean squared errors of quantile estimators and their functions. In the last part 

of the paper  (section 5) we present the application of quantile-based inequality, poverty 

and wealth  indices to the Polish Household Budget Survey (HBS) data divided by 

macroregions.  

2. Selected statistical inequality measures based on quantiles 

 Distribution quantiles of a random variable X,  which is identified with a household 

or personal income, or the estimators of these quantiles, have been applied to the 

construction of simple inequality indices as quintile dispersion ratio and decile 

dispersion ratio  [for details see: Panek 2011]. 
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 The quintile dispersion ratio  has the following form : 
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where 8.0Q , 2.0Q  are quintiles, respectively, the fourth and the first.  

 The quintile dispersion ratio can also be defined as the ratio of the sum of incomes 

of the richest 20 percent of the population to the sum of incomes of the poorest 20 

percent: 
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where jGK  is  j-th quintile group. 

 The measure (2) can be interpreted as the ratio of the average income of the richest 

20 percent of the population to the average income of the poorest 20 percent of the 

population and it is usually calculated on the basis of equivalised income.  

 Similar ratios can also be calculated for other quantiles, for instance deciles or 

percentiles (95
th

 and 5
th

) of income distributions. Using the first and ninth decile we can 

obtain the following decile dispersion ratio: 
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where 9.0Q , 1.0Q  are deciles, respectively, the ninth and the first 

and 
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where jGD  is  j-th decile group. 

  The reciprocal of the decile dispersion ratio defined by (4) takes values from the 

interval (0,1) and is called the dispersion index for the end portions of the distribution: 
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If the index 10:1K  is closer to the 1, the inequality is lower (mean incomes in the 

extremal decile groups are the same). 

 A popular inequality measure based on income shares received by subsequent decile 

groups is the coefficient of maximum  equalisation, also known as the Schutz index or 

the Pietra ratio:  
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, where jS  is income share of the j-th decile group in the 

total income.  

 The measure (6) can be interpreted as the portion of the total income that would 

have to be redistributed (taken from the richer half of the population and given to the 

poorer half) for there to be income equality. 

 During a thorough income distribution analysis the problem of inequality 

measurement is usually interrelated with the estimation of poverty indices. To obtain 

reliable poverty characteristics it becomes crucial to define and estimate the poverty 

threshold uz . There are numerous definitions of this threshold, taking into consideration 

absolute or relative approach. The relative poverty line utilized by Eurostat is 

,. .5060 Mzu   where 50.M  is median of a random variable X.  

On the basis of the poverty line, the popular head-count ratio  (at-risk-of-poverty 

rate) can be determined:  ,ˆ
.. uubzg zFW   where F is the distribution function of  X.  

 The poverty threshold and head-count ratio can be estimated using the following 

estimators:  

 Mezu 6.0ˆ   (7) 

and  
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where nXXX ,...,, 21  is a random sample and Me  is the median estimator established on 

the basis of the random sample.  

 Wealth indices, concentrated on the upper part of income distribution,  are utilized 

to measure the share  of  the best-off  in a population of households. Among others a 

wealth line can be defined as 5.03Mzb   [Brzeziński 2014, Peichl et al.2008] and the 
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wealth index  based on it is given by:  .1 bb zFW   These measures can be estimated 

using the following formulas :  

 ,3ˆ
5.0Mzb    (9) 

and  
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where nXXX ,...,, 21  is a random sample and Me  is the median estimator. 

 The examples of more sophisticated inequality measures, focused on each and every 

part of income distribution, are Gini and Zenga indices. The popular Gini index based 

on the Lorenz curve is not considered in this paper. The synthetic Zenga index is based 

on the concentration curve that can be considered point concentration measure, as it is 

sensitive to changes at every “point” of income distribution. The Zenga point measure 

of inequality is based on the relation between income and population quantiles [Arcagni 

2017, Zenga 1990, Greselin et al. 2012]: 
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where )(1 pFxp
  denotes the population p-quantile and )(1* pQxp

  is the 

corresponding income quantile. Therefore the Zenga approach consists of comparing 

the abscissas at which F(x) and Q(x) take the same value p. 

 Zenga synthetic inequality index is defined as simple arithmetic mean of point 

concentration measures 1,0, pZ p .  

3. Quantile estimators and their properties 

 Let X be a continuous random variable with distribution function F and let 

 pFQp
1  be the p-quantile of the random variable X, where  .1,0p  If F is 

continuous and strictly increasing distribution function, the p
th

 quantile always exists 

and is uniquely determined.  

The well-known estimator of the quantile pQ  is the statistic: 

  ,)(:inf)(ˆ 1 pxFxpFQ nnp  
 (12) 

where  xFn  is empirical distribution obtaining on the basis of a n-element random 

sample ....,,, 21 nXXX    
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 The problem of quantile estimation has a very long history. In the subject literature 

numerous nonparametric (distribution-free) quantile estimators have been presented. 

Their particular  expressions depend on the underlying empirical distribution function 

definition. 

 Classical quantile estimator obtained for the distribution 
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where 
)(

)(

n

kX  is an order statistic of rank k. 

 Among other estimators of quantiles, pQ , we can mention the standard estimator,  

Huang-Brill estimator, Harrel-Davis estimator and Bernstein estimator, to name only a 

few [Huang and Brill 1999, Harrell and Davis 1982]. 

 By means of the empirical distribution level crossing, which has the following form: 
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we obtain the Huang-Brill estimator of the p
th

 quantile pQ : 
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It can easily be noticed that for 5.0p  the estimator of the quantile 5.0Q  is the order 

statistic .)(
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Another interesting quantile estimator is the Bernstein estimator given by: 
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More examples of quantile estimators can be found in the papers of Pekasiewicz [2015] 

and Zieliński [2006]. 

4. Analysis of Monte Carlo  experiments 

 The main objective of the Monto Carlo experiments conducted in the study was to 

assess the properties of selected estimators of quantiles. We were especially interested 

in their biases and sampling variances i.e. the components of their sampling errors. The 

following estimators have been taken into consideration: the classical quantile estimator 

(13), Huang-Brill estimator (15) and Bernstein estimator (17). The estimators presenting 

the best performance were further applied to evaluate the quantile-based inequality 

measures for income distributions in Poland by macroregion.    

 In the experiments two different probability distributions were utilized as population 

models: lognormal distribution, ),( LG , defined by the following density function 
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also as the Burr type-III distribution, with the density function of the form (Kleiber, 

Kotz, 2003)  
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 The sets of parameters of both theoretical distributions were established on the basis 

of real income data coming from Polish HBS and administrative registers, comprising 

large variety of subpopulations differing in the level of income inequality, which have 

been observed over the last two decades. The sample sizes were fixed for each variant 

as n=500; n=1000, n=2000. The number of repetitions of Monte Carlo experiment was 

N=20 000. The simulated sample spaces were used to assess, for each estimator, its 

empirical bias and standard error.  

 Table 1 and 2 present the results of the calculations for three quantile estimators: 

classical, Huang-Brill, and Bernstein, for sample sizes 500 and 1000.  

 In particular, the tables show the relative biases and relative root mean squared 

errors of these estimators obtained for predefined population models - lognormal and 

Dagum- differing across the experiments in the overall inequality level. The similar 

experiments for Gini and Zenga ratios were reported in Jędrzejczak (2015).   

 Analysing the results of the calculations it becomes obvious that the Bernstein 

estimator performs better than its competitors - its root mean squared errors (RMSE) are 
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much smaller than those observed for the other quantile estimators and its relative 

biases (BIAS) are also smaller, especially when the quantiles of higher orders are taken 

into regard.  

 The bias and RMSE of Huang-Brill estimator are similar to the respective values for 

the classical quantile estimator.  It is worth noting that for all cases biases are rather 

negligible so the total errors are dominated by sampling variances. In general, the 

estimation errors are higher for extremal quantile orders, for the heavy-tailed Dagum 

model and they also tend to increase as income inequality increases.  

 

Table 1. Properties of selected quantile estimators for number sample  n=500 

Distribution p pQ̂  HB

pQ̂  Brs

pQ̂  

BIAS RMSE BIAS RMSE BIAS RMSE 

)6.0,8(LG  

0.1 -0.215 4.587 -0.489 4.639 0.283 4.419 

0.2 -0.122 3.839 -0.333 3.833 0.194 3.739 

0.3 -0.100 3.535 -0.285 3.550 0.153 3.445 

0.7  0.230 3.574 -0.118 3.548 0.103 3.471 

0.8 -0.161 3.824 -0.158 3.856 0.095 3.728 

0.9 -0.319 4.582 -0.306 4.600 0.077 4.427 

)8.0,3.8(LG  

0.1 -0.270 6.095  0.768 6.276 0.448 5.883. 

0.2 -0.150 5.071  0.450 5.140 0.297 4.928 

0.3 -0.089 4.715  0.382 4.756 0.271 4.614 

0.7  0.314 4.754 -0.151 4.703 0.176 4.619 

0.8 -0.158 5.070 -0.195 5.113 0.225 4.955 

0.9 -0.316 6.077 -0.329 6.120 0.259 5.900 

D(0.7, 3.6, 3800) 

0.1 -0.280 5.558  0.564 5.534 0.279 5.332 

0.2 -0.174 3.957  0.341 3.969 0.105 3.841 

0.3 -0.133 3.298  0.177 3.298 0.073 3.216 

0.7  0.167 2.927 -0.104 2.924 0.065 2.846 

0.8 -0.127 3.247 -0.102 3.234 0.097 3.165 

0.9 -0.203 4.240 -0.212 4.254 0.196 4.128 

D(0.7, 2.8, 3800) 

0.1 -0.315 7.041 -0.737 7.174 0.433 6.782 

0.2 -0.181 5.065  0.437 5.146 0.213 4.918 

0.3 -0.092 4.228  0.272 4.283 0.184 4.133 

0.7  0.241 3.766 -0.124 3.748 0.118 3.662 

0.8 -0.127 4.159 -0.187 4.138 -0.186 4.061 

0.9 -0.342 5.428 -0.279 5.482 -0.218 5.274 

Source: author’s calculations in Mathematica. 
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Table  2. Properties of selected quantile estimators for sample sizes n=1000 

Distribution p 
pQ̂  HB

pQ̂  Brs

pQ̂  

BIAS RMSE BIAS RMSE BIAS RMSE 

)6.0,0.8(LG  0.1 -0.087 3.240  0.254 3.248 0.132 3.165 

0.2 -0.079 2.718  0.139 2.726 0.108 2.669 

0.3 -0.039 2.504  0.133 2.511 0.095 2.481 

0.7  0.089 2.528 -0.082 2.521 0.042 2.469 

0.8 -0.077 2.712 -0.077 2.712 0.047 2.680 

0.9 -0.131 3.245 -0.131 3.245 0.041 3.169 

)8.0,3.8(LG  0.1 -0.097 4.350  0.359 4.373 0.302 4.220 

0.2 -0.088 3.581   0.195 3.592 0.177 3.571 

0.3 -0.057 3.336  0.176 3.346 0.134 3.271 

0.7  0.169 3.338 -0.061 3.324 0.108 3.280 

0.8 -0.099 3.620 -0.099 3.620 0.070 3.510 

0.9 -0.116 4.339 -0.116 4.339 0.089 4.208 

D(0.7, 3.6,3800) 0.1 -0.182 3.923  0.313 3.916 0.086 3.803 

0.2 -0.068 2.800  0.141 2.776 0.069 2.741 

0.3 -0.105 2.349  0.114 2.346 0.000 2.303 

0.7  0.010 2.054 -0.080 2.049 0.043 2.013 

0.8 -0.085 2.298 -0.078 2.287 0.032 2.256 

0.9 -0.083 2.984  0.116 2.991 0.121 2.915 

D(0.7, 2.8,3800) 0.1 -0.156 5.073  0.368 5.069 0.221 4.493 

0.2 -0.112 3.580  0.232 3.589 0.082 3.509 

0.3 -0.080 3.015  0.144 2.991 0.062 2.958 

0.7  0.137 2.652 -0.063 2.681 0.073 2.599 

0.8 -0.084 2.956 -0.077 2.935 0.069 2.900 

0.9 -0.133 3.846 -0.112 3.848 0.147 3.774 

Source: author’s calculations in Mathematica. 

 

 The next step of the experiment was to study basic statistical properties of the 

estimators of income inequality measures: )1(

10:10W  and )1(

20:20W  given by the formulas (1) 

and (3). These estimators can be obtained as functions of the subsequent quantile 

estimators mentioned above. The properties of quintile and decile dispersion ratios have 

been demonstrated in tables 3 and 4. All the values are presented as percentages relative 

to their corresponding population parameters. 
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Table 3. Properties of Quintile Dispersion Ratio based on quantile estimators  

Distribution n 

Quintile Dispersion Ratio 

)1(

20:20Ŵ  (stand.) 
)1(

20:20Ŵ  (Huang-Brill) 
)1(

20:20Ŵ  (Bernstein) 

BIAS RMSE BIAS RMSE BIAS RMSE 

)6.0,0.8(LG  500 0.113 4.724 -0.387 4.725 0.054 4.532 

1000 0.070 3.335 -0.194 3.329 0.038 3.239 

)7.0,1.8(LG  500 0.063 5.484 -0.388 5.453 -0.014 5.265 

1000 0.011 3.868 -0.157 3.859 -0.017 3.756 

)8.0,3.8(LG  500 0.134 6.252 -0.549 6.189 0.042 6.004 

1000 0.068 4.444 -0.231 4.473 0.027 4.308 

D(0.7, 2.8, 3800) 500 0.156 4.454 -0.262 4.442 0.091 4.275 

1000 0.072 3.154 -0.137 3.120 0.046 3.068 

D(0.8, 3.0, 3200) 500 0.174 4.978 -0.323 4.997 0.125 4.794 

1000 0.073 3.521 -0.155 3.492 0.053 3.417 

D(0.7, 2.8, 3800) 500 0.235 5.753 -0.287 5.691 0.136 5.505 

1000 0.080 4.044 0.213 4.040 0.046 3.930 

Source: author’s calculations in Mathematica. 

 

Table 4. Properties of Decile Dispersion Ratio based on quantile estimators  

Distribution n 

Decile Dispersion Ratio 

)1(

10:10Ŵ  (stand.) 
)1(

10:10Ŵ  (Huang-Brill) 
)1(

10:10Ŵ  (Bernstein) 

BIAS RMSE BIAS RMSE BIAS RMSE 

)6.0,0.8(LG  500 0.126 6.174 -0.631 6.096 0.021 5.882 

1000 0.065 4.327 -0.324 4.304 0.017 4.191 

)7.0,1.8(LG  500 0.124 7.197 -0.630 7.104 0.013 6.868 

1000 0.084 5.088 -0.273 5.028 0.019 4.926 

)8.0,3.8(LG  500 0.186 8.134 -0.773 8.124 0.029 7.758 

1000 0.124 5.815 -0.352 5.766 0.037 5.615 

D(0.7, 2.8, 3800) 500 0.353 6.671 -0.439 6.589 0.181 6.344 

1000 0.162 4.702 -0.211 4.651 0.082 4.543 

D(0.8, 3.0, 3200) 500 0.347 7.354 -0.493 7.402 0.234 7.002 

1000 0.097 5.179 -0.266 5.193 0.039 5.009 

D(0.7, 2.8, 3800) 500 0.554 8.598 -0.551 8.470 0.283 8.181 

1000 0.181 6.003 -0.298 5.948 0.066 5.800 

Source: author’s calculations in Mathematica. 

 



11 

 

 Analysing the results of the calculations presented in tables 3 and 4 it becomes 

obvious that the estimators of quintile and decile dispersion ratios based on the 

Bernstein quantile estimator outperform the estimators based on the classical and 

Huang-Brill estimators of quantiles. For the Bernstein estimator, the biases and mean 

squared errors turned out to be substantially smaller for most cases.  

5. Application of inequality measures to the analysis of income distribution in 

Poland  

 The inequality measures based on deciles and quintiles, as well as the Zenga indices, 

have been applied to income inequality analysis in Poland by macroregion (Nuts1), 

based on the HBS sample 2014.  They include the decile and quintile dispersion ratios, 

the reciprocal of the decile dispersion ratio K, the coefficient of maximum equalisation 

E and the synthetic Zenga index Z. To obtain the reliable estimates of these coefficients 

we used the Bernstein quantile estimator which turned out to have the highest precision 

(tables 1 and 2).  

 Basic characteristics of the HBS sample, divided by macroregion, are presented in 

table 5. Table 6 shows the results of the approximation of the empirical income 

distributions by means of the Dagum model using maximum likelihood method. 

Additionally, in figure 1 there are histograms and  fitted Dagum density curves 

describing income distributions in Poland by macroregion.    

Table 5. Numerical characteristics of available income in macroregions 

Macroregion 
Number of 

households 
Minimum Maximum Average 

Standard 

Deviation 

Central 8046 11.00 155017.49 4240.21 3790.53 

Southern 7433 12.50 37152.00 3634.03 2179.59 

Eastern 6246 10.00 84032.90 3461.45 2876.23 

North-western 5658 3.00 43493.45 3772.15 2611.00 

South-western 3971 1.67 37200.00 3591.07 2337.83 

Northern 5575 9.00 126739.54 3646.44 3225.72 

Poland 36929 1.67 155017.49 3755.33 2959.95 

Source: author’s calculations based on HBS sample 2014. 
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Table 6. Approximation of income distributions in Nuts1 by means of the Dagum model  

Macroregion 
Dagum distribution parameters 

Overlap measure 
  a b 

Central 0.790 2.8044 3839.630 0.982 

Southern 0.669 3.618 3800.167 0.970 

Eastern 0.756 3.051 3286.467 0.971 

North-western 0.743 3.233 3687.076 0.964 

South-western 0.722 3.301 3587.800 0.970 

Northern 0.718 3.158 3544.934 0.979 

Poland 0.747 3.125 3611.017 0.975 

Source: author’s calculations based on HBS sample 2014. 

 

  

  

 
 

Fig. 1. Income distributions for Nuts1 and fitting by means of the Dagum model 

Source: author’s elaborations in R. 

 

Southern region  Central region  

Eastern region North-western region  

South-western region  Northern region  
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 Analysing the outcomes of the approximation presented in the figure 1 one can 

observe very high consistency of the empirical distributions with the theoretical ones. It 

can also be confirmed by the values of a goodness-of-fit measure (the overlap 

coefficient) calculated for each region and the whole country and presented in the last 

column of the  table 6.  

 The estimated values of inequality measures such as the decile and quintile 

dispersion ratios, the reciprocal of the decile dispersion ratio K and the synthetic Zenga 

index Z, obtained on the basis of implementation of the Bernstein estimator, are given in 

table 7. The indexed values of selected inequality measures from the table 7 have been 

used to order Polish macroregions by inequality level, as it is demonstrated in the figure 

2. They also show the differentiation of income inequality across regions. 

 

Table 7. Estimated inequality measures for macroregions 

Macroregion )1(
20:20W  )2(

20:20W  )1(
10:10W  )2(

10:10W  10:1K  E Zenga 

Central 3.049 6.939 5.494 12.085 0.083 26.491 0.386 

Southern 2.595 4.962 4.283 7.577 0.132 21.667 0.269 

Eastern 2.904 6.147 4.927 9.908 0.101 24.740 0.348 

North-western 2.750 5.577 4.742 8.614 0.116 23.221 0.308 

South-western 2.789 5.375 4.536 8.172 0.122 23.017 0.295 

Northern 2.828 6.039 4.814 9.841 0.102 24.412 0.347 

Poland 2.819 5.916 4.843 9.526 0.105 22.000 0.338 

Source: author’s calculations based on HBS sample 2014. 

 

 

   Fig. 2. Selected inequality measures for macroregions (Poland=100)  

   Source: author’s elaborations. 
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 The estimated values of quintile and decile share ratios, as well as the values of 

synthetic Zenga inequality measures, indicate the Central macroregion as the one with 

the highest income inequality level. It is particularly evident for extremal income 

groups, e.g. income of the richest 10 percent of  households is 12 times bigger than the 

income of the poorest 10 percent ( )2(
10:10W =12.085).  On the other  hand,  for the Southern 

macroregion the lowest values of all inequality measures have been observed (except 

for the K index). Three macroregions: Central, Eastern and Northern present income 

inequality above the national level while in the remaining three: North-Western, South-

Western and Southern it was found to be substantially lower than for the whole country 

(figure 2). In general, 22% of the total income  of the Polish households should have to 

be redistributed from the richer to the poorer groups for there to be income equality 

(E=22%).  

 The relative poverty threshold established as 60% of equivalent national median 

income and relative wealth line established as three median estimated by means of 

Bernstein estimator are equal to 1181.85 PLN and 5909.23 PLN, respectively. The 

estimates of poverty index (head-count ratio,(8)) and wealth index (9) for each 

macroregion  based on this thresholds are presented in table 8, In the table there are also 

the poverty thresholds and wealth lines estimated separately for each macroregion. 

Indexed values of poverty and wealth ratios (Poland=100%)  have been presented in  

figure 3. 

Table 8.  Estimated poverty and wealth measures for macroregions 

Macroregion Poverty line Head-count ratio Wealth line Wealth index 

Central 1394.94 12.73 6974.68 5.42 

Southern 1247.39 12.04 6236.93 1.52 

Eastern 1085.24 20.12 5426.19 1.68 

North-western 1242.65 12.99 6213.26 1.63 

South-western 1211.82 12.49 6059.09 1.81 

Northern 1204.10 16.72 6020.48 2.26 

Poland 1181.85 14.46 5909.23 2.56 

Source: author’s calculations based on HBS sample 2014. 
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      Fig. 3. Poverty and wealth measures for macroregions  (Poland=100)  

      Source: author’s elaborations. 

   

 It is worth noting that the ordering of Polish macroregions by poverty rates is 

different from the ordering by inequality levels- for some regions (Central) relatively 

high income inequality do not coincide with high poverty rates, and inversely, relatively 

low inequality do not always induce low poverty rates (North-Western region).  On the 

other hand, for highly unequal distributions (Central, Eastern), one can observe large 

discrepancy between poverty and wealth rates (figure 3), indicating different within-

region inequality patterns- the large amount of inequality due to extremely low income 

groups (the case of  Eastern region) or extremely high ( for Central region).    

6. Conclusion 

 Analysis of income and wage distribution is strictly connected with the estimation of 

inequality and poverty measures based on quantiles. Therefore, for income data coming 

usually from sample surveys, it becomes crucial to use the quantile estimators 

presenting satisfying statistical properties. In the paper, the Huang-Brill and Bernstein 

estimators have been proposed and analysed from the point of view of their sampling 

errors under several income distribution models. In the simulations studies the 

properties of these estimators have been compared with the classical one which is most 

often applied in practice. The results of the calculations reveal that the Bernstein 

estimator performs better than its competitors- its root mean squared error (RMSE) is 

much smaller than the one observed for the other quantile estimators and its relative 

bias (BIAS) is also smaller, especially when the quantiles of higher orders are taken into 
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regard. Consequently, the Bernstein estimator has been applied to the estimation of 

various inequality measures for NUTS 1 regions in Poland.   

 The reliable quantile estimators, as well as various inequality, poverty and wealth 

measures based on them, enabled us to analyse income distributions in Poland by 

macroregion. The analysis revealed substantial discrepancies between regions in 

Poland, what can be the basis of further analysis for economists and social-policy 

makers.  
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Abstract 

Kwantyle rozkładu dochodów są wykorzystywane do szacowania różnorodnych miar  nierówności, analiz 

ubóstwa i bogactwa gospodarstw domowych. Najczęściej są one szacowane przy użyciu klasycznego 

http://ftp.iza.org/dp3790.pdf
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estymatora, będącego statystyką pozycyjną odpowiedniej rangi. Głównym celem pracy jest porównanie 

własności klasycznego estymatora kwantyla z własnościami estymatorów zaproponowanych przez 

Huanga i Brilla oraz Bernsteina. W celu zbadania obciążeń i błędów średniokwadratowych estymatorów 

kwantyli i miar nierówności opartych na kwantylach przeprowadzono eksperymenty Monte Carlo, 

rozważając różne liczebności prób i różne rozkłady. W pracy przedstawiono wyniki badań dla populacji o 

rozkładach lognormalnym i Daguma, które najczęściej charakteryzującą dochody gospodarstw 

domowych. Wyniki eksperymentów symulacyjnych wskazują, że spośród rozważanych estymatorów  

najlepsze własności  ma estymator Bernsteina, dlatego został on wykorzystany do oszacowania miar 

nierówności dochodowych, ubóstwa i bogactwa w Polsce w 2014 r. z uwzględnieniem podziału kraju na 

makroregiony. Analizy przeprowadzono w oparciu o dane pochodzące z Badania Budżetów Gospodarstw 

Domowych prowadzonego przez Główny Urząd Statystyczny. 

 

Słowa kluczowe: rozkład dochodu, nierówność, ubóstwo, bogactwo, estymator kwantyla. 

 


