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Abstract

Quantiles of income distributions are often applied to the estimation of various inequality, poverty and
wealth characteristics. They are traditionally estimated using the classical quantile estimator based on a
relevant order statistic. The main objective of the paper was to compare the classical, Huang-Brill and
Bernstein estimator for these measures from the point of view of their statistical properties. Several
Monte Carlo experiments have been conducted to assess biases and mean squared errors of income
distribution characteristics for different sample sizes under the lognormal or Dagum type-l1 models. The
results of the experiments have been used to the estimation of inequality, poverty and wealth measures in

Poland by macroregion on the basis of the micro data coming from the Household Budget Survey 2014.
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1. Introduction

Statistical measures based on quantiles are frequently applied to the analysis of
income distribution as they comprise many popular inequality and poverty indices and
indicators. Simple dispersion ratios, defined as the ratios of the income of the richest
quantile over that of the poorest quantile, usually utilize deciles and quintiles, but in
principle, any quantile of income distribution can be used. A version of the decile
dispersion ratio using the ratio of the 10th over the 40th percentile which has recently
become popular is the so called Palma ratio. Another popular inequality measure based
on deciles is the coefficient of maximum equalisation, also known as the Schutz index
or the Pietra ratio. Contrary to the well-known Gini ratio, the quantile-based dispersion
ratios are focused on income differences located in the tails of the distribution rather

than in the middle groups. They can be used as supplementary to overcome the
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shortcoming of the Gini index of being proportionally oversensitive to changes in the
middle of the distribution. More sophisticated measures of income inequality have been
constructed using differences (or ratios) between population and income quantiles.
Probably the first of such measures was the Holme’s coefficient standardized by
Bortkiewicz, which is based on the quantiles of order 0.5. The concentration curve and
corresponding synthetic concentration coefficient proposed by Zenga, are also defined
in terms of quantiles of a size distribution and the corresponding quantiles of the first-
moment distribution.

The quantile-based inequality measures are traditionally estimated using the
classical quantile estimator based on a relevant order statistic. In many applications
these estimates are presented without any information about their precision, which must
be the basis for further statistical inference e.qg. statistical hypothesis testing and interval
estimation. The problem can be neglected to some extent when we consider the overall
population or the sample size is large enough to apply the asymptotic theory; one should
be conscious however, that for heavy-tailed income distributions the sufficient sample
size can be very large indeed. For some population divisions (by age, occupation,
family type or geographical area) these simple methods have been proven seriously
biased and the estimation errors were found to be far beyond the values that can be
accepted by social policy-makers for making reliable policy decisions (Jedrzejczak,
2015).

The paper addresses the problem of statistical properties of the estimators of popular
inequality measures based on quantiles. After a brief description of such measures
(section 2), selected quantile estimators have been introduced (section 3). Section 4
comprises the results of Monte Carlo experiments which have been conducted to assess
biases and mean squared errors of quantile estimators and their functions. In the last part
of the paper (section 5) we present the application of quantile-based inequality, poverty
and wealth indices to the Polish Household Budget Survey (HBS) data divided by

macroregions.

2. Selected statistical inequality measures based on quantiles

Distribution quantiles of a random variable X, which is identified with a household
or personal income, or the estimators of these quantiles, have been applied to the
construction of simple inequality indices as quintile dispersion ratio and decile
dispersion ratio [for details see: Panek 2011].



The quintile dispersion ratio has the following form :

WD, = e (1)
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where Q,,, O,, are quintiles, respectively, the fourth and the first.

The quintile dispersion ratio can also be defined as the ratio of the sum of incomes
of the richest 20 percent of the population to the sum of incomes of the poorest 20

percent:
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where GK, is j-th quintile group.

The measure (2) can be interpreted as the ratio of the average income of the richest
20 percent of the population to the average income of the poorest 20 percent of the
population and it is usually calculated on the basis of equivalised income.

Similar ratios can also be calculated for other quantiles, for instance deciles or
percentiles (95" and 5™) of income distributions. Using the first and ninth decile we can

obtain the following decile dispersion ratio:

vvl%%io:gﬁ, )

where Q,,, O,, are deciles, respectively, the ninth and the first
and
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where GD, is j-th decile group.

The reciprocal of the decile dispersion ratio defined by (4) takes values from the
interval (0,1) and is called the dispersion index for the end portions of the distribution:
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If the index K., is closer to the 1, the inequality is lower (mean incomes in the

extremal decile groups are the same).
A popular inequality measure based on income shares received by subsequent decile
groups is the coefficient of maximum equalisation, also known as the Schutz index or

the Pietra ratio:

E:Zmo(S,—ij, (6)
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for §;>0.1 and S, = iefo , where S is income share of the j-th decile group in the
2

i1
total income.

The measure (6) can be interpreted as the portion of the total income that would
have to be redistributed (taken from the richer half of the population and given to the
poorer half) for there to be income equality.

During a thorough income distribution analysis the problem of inequality
measurement is usually interrelated with the estimation of poverty indices. To obtain
reliable poverty characteristics it becomes crucial to define and estimate the poverty

threshold z,. There are numerous definitions of this threshold, taking into consideration
absolute or relative approach. The relative poverty line utilized by Eurostat is

z, =0.6M,., where M, is median of a random variable X.
On the basis of the poverty line, the popular head-count ratio (at-risk-of-poverty
rate) can be determined: %2, ,, = F(z,), where F is the distribution function of X.

The poverty threshold and head-count ratio can be estimated using the following

estimators:
5, =0.6Me (7)
and
N #1X: <0.6Me
Wzg.ub. :¥1 (8)

where X, X,,..., X, is a random sample and Me is the median estimator established on

the basis of the random sample.

Wealth indices, concentrated on the upper part of income distribution, are utilized
to measure the share of the best-off in a population of households. Among others a
wealth line can be defined as z, =3M,; [Brzezinski 2014, Peichl et al.2008] and the
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wealth index based on it is given by: W, =1—F(z,). These measures can be estimated

using the following formulas :

21) =3Mys, (9)
and
W, = #{X, ;3Me}, (10)

where X,, X,,...,X, isarandom sample and Me is the median estimator.

The examples of more sophisticated inequality measures, focused on each and every
part of income distribution, are Gini and Zenga indices. The popular Gini index based
on the Lorenz curve is not considered in this paper. The synthetic Zenga index is based
on the concentration curve that can be considered point concentration measure, as it is
sensitive to changes at every “point” of income distribution. The Zenga point measure
of inequality is based on the relation between income and population quantiles [Arcagni
2017, Zenga 1990, Greselin et al. 2012]:

Z =2 Tr_1_Tr, (11)
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where x,=F"'(p) denotes the population p-quantile and x,=Q7'(p) is the

corresponding income quantile. Therefore the Zenga approach consists of comparing
the abscissas at which F(x) and Q(x) take the same value p.

Zenga synthetic inequality index is defined as simple arithmetic mean of point

concentration measures Z,, p €(0,1).

3. Quantile estimators and their properties
Let X be a continuous random variable with distribution function F and let
0, =F"'(p) be the p-quantile of the random variable X, where pe(0,1). If F is

continuous and strictly increasing distribution function, the p™ quantile always exists
and is uniquely determined.

The well-known estimator of the quantile Q, is the statistic:
Q, = F"(p) =inf {x: F,()> p}, (12)
where F(x) is empirical distribution obtaining on the basis of a n-element random

sample X, X,, ..., X
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The problem of quantile estimation has a very long history. In the subject literature
numerous nonparametric (distribution-free) quantile estimators have been presented.
Their particular expressions depend on the underlying empirical distribution function
definition.

Classical quantile estimator obtained for the distribution

card{1< j<n:x, <x}

F(x)= for x € R is defined by the following formula:
o XE for npeN,
Q, = ") (13)
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where X} is an order statistic of rank k.

Among other estimators of quantiles, Q,, we can mention the standard estimator,
Huang-Brill estimator, Harrel-Davis estimator and Bernstein estimator, to name only a

few [Huang and Brill 1999, Harrell and Davis 1982].

By means of the empirical distribution level crossing, which has the following form:

F )= w0 () (14)
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we obtain the Huang-Brill estimator of the p™ quantile Q,:

fori=2,3,...n-1,

QF =X (3, (15)

where

qzlm(p%{lzﬁzl:lﬂ+2. (16)

It can easily be noticed that for p=0.5 the estimator of the quantile Q,, is the order

statistic X ..
(HY

Another interesting quantile estimator is the Bernstein estimator given by:
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More examples of quantile estimators can be found in the papers of Pekasiewicz [2015]
and Zielinski [2006].

4. Analysis of Monte Carlo experiments

The main objective of the Monto Carlo experiments conducted in the study was to
assess the properties of selected estimators of quantiles. We were especially interested
in their biases and sampling variances i.e. the components of their sampling errors. The
following estimators have been taken into consideration: the classical quantile estimator
(13), Huang-Brill estimator (15) and Bernstein estimator (17). The estimators presenting
the best performance were further applied to evaluate the quantile-based inequality
measures for income distributions in Poland by macroregion.

In the experiments two different probability distributions were utilized as population

models: lognormal distribution, LG(u, o), defined by the following density function

2
f(x):;exp —M , X > 0 and Dagum distribution D(p,a,b), known
XO_\/Z

20
also as the Burr type-Ill distribution, with the density function of the form (Kleiber,

J\-0-1
Kotz, 2003) f(x): ab_”ap x”“[l + (%} J , x>0.

The sets of parameters of both theoretical distributions were established on the basis
of real income data coming from Polish HBS and administrative registers, comprising
large variety of subpopulations differing in the level of income inequality, which have
been observed over the last two decades. The sample sizes were fixed for each variant
as n=500; n=1000, n=2000. The number of repetitions of Monte Carlo experiment was
N=20 000. The simulated sample spaces were used to assess, for each estimator, its
empirical bias and standard error.

Table 1 and 2 present the results of the calculations for three quantile estimators:
classical, Huang-Brill, and Bernstein, for sample sizes 500 and 1000.

In particular, the tables show the relative biases and relative root mean squared
errors of these estimators obtained for predefined population models - lognormal and
Dagum- differing across the experiments in the overall inequality level. The similar
experiments for Gini and Zenga ratios were reported in Jedrzejczak (2015).

Analysing the results of the calculations it becomes obvious that the Bernstein

estimator performs better than its competitors - its root mean squared errors (RMSE) are



much smaller than those observed for the other quantile estimators and its relative
biases (BIAS) are also smaller, especially when the quantiles of higher orders are taken
into regard.

The bias and RMSE of Huang-Brill estimator are similar to the respective values for
the classical quantile estimator. It is worth noting that for all cases biases are rather
negligible so the total errors are dominated by sampling variances. In general, the
estimation errors are higher for extremal quantile orders, for the heavy-tailed Dagum

model and they also tend to increase as income inequality increases.

Table 1. Properties of selected quantile estimators for number sample n=500

N HB Brs
Distribution o] Q Q
BIAS RMSE BIAS RMSE BIAS RMSE
0.1 -0.215 4,587 -0.489 4,639 0.283 4419
0.2 -0.122 3.839 -0.333 3.833 0.194 3.739
0.3 -0.100 3.535 -0.285 3.550 0.153 3.445
LG(8,0.6)
0.7 0.230 3.574 -0.118 3.548 0.103 3.471
0.8 -0.161 3.824 -0.158 3.856 0.095 3.728
0.9 -0.319 4,582 -0.306 4,600 0.077 4427
0.1 -0.270 6.095 0.768 6.276 0.448 5.883.
0.2 -0.150 5.071 0.450 5.140 0.297 4,928
0.3 -0.089 4,715 0.382 4,756 0.271 4614
LG(8.3,0.8)
0.7 0.314 4,754 -0.151 4,703 0.176 4.619
0.8 -0.158 5.070 -0.195 5.113 0.225 4,955
09 -0.316 6.077 -0.329 6.120 0.259 5.900
0.1 -0.280 5.558 0.564 5.534 0.279 5.332
0.2 -0.174 3.957 0.341 3.969 0.105 3.841
0.3 -0.133 3.298 0.177 3.298 0.073 3.216
D(0.7, 3.6, 3800)
0.7 0.167 2.927 -0.104 2.924 0.065 2.846
0.8 -0.127 3.247 -0.102 3.234 0.097 3.165
09 -0.203 4.240 -0.212 4.254 0.196 4128
0.1 -0.315 7.041 -0.737 7.174 0.433 6.782
0.2 -0.181 5.065 0.437 5.146 0.213 4918
0.3 -0.092 4,228 0.272 4,283 0.184 4133
D(0.7, 2.8, 3800)
0.7 0.241 3.766 -0.124 3.748 0.118 3.662
0.8 -0.127 4,159 -0.187 4,138 -0.186 4,061
09 -0.342 5.428 -0.279 5.482 -0.218 5.274

Source: author’s calculations in Mathematica.



Table 2. Properties of selected quantile estimators for sample sizes n=1000

A A A

Distribution p i & %"
BIAS RMSE BIAS RMSE BIAS RMSE
LG(8.0,0.6) 0.1 -0.087 3.240 0.254 3.248 0.132 3.165
0.2 -0.079 2.718 0.139 2.726 0.108 2.669
0.3 -0.039 2.504 0.133 2.511 0.095 2.481
0.7 0.089 2.528 -0.082 2.521 0.042 2.469
0.8 -0.077 2.712 -0.077 2.712 0.047 2.680
09 -0.131 3.245 -0.131 3.245 0.041 3.169
LG(8.3,0.8) 0.1 -0.097 4.350 0.359 4,373 0.302 4,220
0.2 -0.088 3.581 0.195 3.592 0.177 3.571
0.3 -0.057 3.336 0.176 3.346 0.134 3.271
0.7 0.169 3.338 -0.061 3.324 0.108 3.280
0.8 -0.099 3.620 -0.099 3.620 0.070 3.510
0.9 -0.116 4,339 -0.116 4,339 0.089 4,208
D(0.7,3.6,3800) 0.1 -0.182 3.923 0.313 3.916 0.086 3.803
0.2 -0.068 2.800 0.141 2.776 0.069 2.741
0.3 -0.105 2.349 0.114 2.346 0.000 2.303
0.7 0.010 2.054 -0.080 2.049 0.043 2.013
0.8 -0.085 2.298 -0.078 2.287 0.032 2.256
0.9 -0.083 2.984 0.116 2.991 0.121 2.915
D(0.7, 2.8,3800) 0.1 -0.156 5.073 0.368 5.069 0.221 4.493
0.2 -0.112 3.580 0.232 3.589 0.082 3.509
0.3 -0.080 3.015 0.144 2.991 0.062 2.958
0.7 0.137 2.652 -0.063 2.681 0.073 2.599
0.8 -0.084 2.956 -0.077 2.935 0.069 2.900
09 -0.133 3.846 -0.112 3.848 0.147 3.774

Source: author’s calculations in Mathematica.

The next step of the experiment was to study basic statistical properties of the
estimators of income inequality measures: W), and W,.,, given by the formulas (1)
and (3). These estimators can be obtained as functions of the subsequent quantile
estimators mentioned above. The properties of quintile and decile dispersion ratios have
been demonstrated in tables 3 and 4. All the values are presented as percentages relative

to their corresponding population parameters.



Table 3. Properties of Quintile Dispersion Ratio based on quantile estimators

Quintile Dispersion Ratio

Distribution n W,  (stand.) W | (Huang-Brill) WS, (Bernstein)
BIAS RMSE BIAS RMSE BIAS RMSE
LG(8.0,0.6) 500 0.113 4.724 -0.387 4,725 0.054 4.532
1000 0.070 3.335 -0.194 3.329 0.038 3.239
LG(8.1,0.7) 500 0.063 5.484 -0.388 5.453 -0.014 5.265
1000 0.011 3.868 -0.157 3.859 -0.017 3.756
LG(8.3,0.8) 500 0.134 6.252 -0.549 6.189 0.042 6.004
1000 0.068 4.444 -0.231 4.473 0.027 4.308
D(0.7,2.8,3800) 500 0.156 4.454 -0.262 4.442 0.091 4.275
1000 0.072 3.154 -0.137 3.120 0.046 3.068
D(0.8,3.0,3200) 500 0.174 4.978 -0.323 4.997 0.125 4.794
1000 0.073 3.521 -0.155 3.492 0.053 3.417
D(0.7,2.8,3800) 500 0.235 5.753 -0.287 5.691 0.136 5.505
1000 0.080 4.044 0.213 4.040 0.046 3.930

Source: author’s calculations in Mathematica.

Table 4. Properties of Decile Dispersion Ratio based on quantile estimators

Decile Dispersion Ratio

Distribution n W, (stand.) W, (Huang-Brill)  W,9) (Bernstein)
BIAS RMSE BIAS RMSE BIAS RMSE

LG(8.0,0.6) 500 0.126 6.174 -0.631 6.096 0.021 5.882
1000 0.065 4.327 -0.324 4.304 0.017 4.191

LG(8.1,0.7) 500 0.124 7.197 -0.630 7.104 0.013 6.868
1000 0.084 5.088 -0.273 5.028 0.019 4.926

LG(8.3,0.8) 500 0.186 8.134 -0.773 8.124 0.029 7.758
1000 0.124 5.815 -0.352 5.766 0.037 5.615

D(0.7,2.8,3800) 500 0.353 6.671 -0.439 6.589 0.181 6.344
1000 0.162 4.702 -0.211 4.651 0.082 4,543

D(0.8,3.0,3200) 500 0.347 7.354 -0.493 7.402 0.234 7.002
1000 0.097 5.179 -0.266 5.193 0.039 5.009

D(0.7,2.8,3800) 500 0.554 8.598 -0.551 8.470 0.283 8.181
1000 0.181 6.003 -0.298 5.948 0.066 5.800

Source: author’s calculations in Mathematica.

10



Analysing the results of the calculations presented in tables 3 and 4 it becomes
obvious that the estimators of quintile and decile dispersion ratios based on the
Bernstein quantile estimator outperform the estimators based on the classical and
Huang-Brill estimators of quantiles. For the Bernstein estimator, the biases and mean

squared errors turned out to be substantially smaller for most cases.

5. Application of inequality measures to the analysis of income distribution in
Poland

The inequality measures based on deciles and quintiles, as well as the Zenga indices,
have been applied to income inequality analysis in Poland by macroregion (Nutsl),
based on the HBS sample 2014. They include the decile and quintile dispersion ratios,
the reciprocal of the decile dispersion ratio K, the coefficient of maximum equalisation
E and the synthetic Zenga index Z. To obtain the reliable estimates of these coefficients
we used the Bernstein quantile estimator which turned out to have the highest precision
(tables 1 and 2).

Basic characteristics of the HBS sample, divided by macroregion, are presented in
table 5. Table 6 shows the results of the approximation of the empirical income
distributions by means of the Dagum model using maximum likelihood method.
Additionally, in figure 1 there are histograms and fitted Dagum density curves

describing income distributions in Poland by macroregion.

Table 5. Numerical characteristics of available income in macroregions

Macroregion Number of Minimum Maximum  Average StaeraTrd
households Deviation
Central 8046 11.00 155017.49  4240.21 3790.53
Southern 7433 12.50 37152.00 3634.03 2179.59
Eastern 6246 10.00 84032.90 3461.45 2876.23
North-western 5658 3.00 43493.45 3772.15 2611.00
South-western 3971 1.67 37200.00 3591.07 2337.83
Northern 5575 9.00 126739.54  3646.44 3225.72
Poland 36929 1.67 155017.49  3755.33 2959.95

Source: author’s calculations based on HBS sample 2014.
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Table 6. Approximation of income distributions in Nuts1 by means of the Dagum model

Dagum distribution parameters

Macroregion Overlap measure
o a b
Central 0.790 2.8044 3839.630 0.982
Southern 0.669 3.618 3800.167 0.970
Eastern 0.756 3.051 3286.467 0.971
North-western 0.743 3.233 3687.076 0.964
South-western 0.722 3.301 3587.800 0.970
Northern 0.718 3.158 3544.934 0.979
Poland 0.747 3.125 3611.017 0.975

Source: author’s calculations based on HBS sample 2014.
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Fig. 1. Income distributions for Nuts1 and fitting by means of the Dagum model

Source: author’s elaborations in R.
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Analysing the outcomes of the approximation presented in the figure 1 one can
observe very high consistency of the empirical distributions with the theoretical ones. It
can also be confirmed by the values of a goodness-of-fit measure (the overlap
coefficient) calculated for each region and the whole country and presented in the last
column of the table 6.

The estimated values of inequality measures such as the decile and quintile
dispersion ratios, the reciprocal of the decile dispersion ratio K and the synthetic Zenga
index Z, obtained on the basis of implementation of the Bernstein estimator, are given in
table 7. The indexed values of selected inequality measures from the table 7 have been
used to order Polish macroregions by inequality level, as it is demonstrated in the figure

2. They also show the differentiation of income inequality across regions.

Table 7. Estimated inequality measures for macroregions

Macroregion W50 Wihe Wil AR Ko E Zenga
Central 3.049 6.939 5.494 12.085 0.083 26.491 0.386
Southern 2.595 4962 4.283 7.577 0.132 21.667 0.269
Eastern 2.904 6.147  4.927 9.908 0.101 24.740 0.348
North-western 2.750 5577  4.742 8.614 0.116 23.221 0.308
South-western 2.789 5.375 4536 8.172 0.122 23.017 0.295
Northern 2.828 6.039 4814 9.841 0.102 24.412 0.347
Poland 2.819 5916 4.843 9.526 0.105 22.000 0.338

Source: author’s calculations based on HBS sample 2014.

140 [ Decile dispersion ratio

# Quintile dispersion ratio

120 m Zenga index
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40 |
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Fig. 2. Selected inequality measures for macroregions (Poland=100)

Source: author’s elaborations.
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The estimated values of quintile and decile share ratios, as well as the values of
synthetic Zenga inequality measures, indicate the Central macroregion as the one with
the highest income inequality level. It is particularly evident for extremal income

groups, e.g. income of the richest 10 percent of households is 12 times bigger than the
income of the poorest 10 percent (W,2,=12.085). On the other hand, for the Southern

macroregion the lowest values of all inequality measures have been observed (except
for the K index). Three macroregions: Central, Eastern and Northern present income
inequality above the national level while in the remaining three: North-Western, South-
Western and Southern it was found to be substantially lower than for the whole country
(figure 2). In general, 22% of the total income of the Polish households should have to
be redistributed from the richer to the poorer groups for there to be income equality
(E=22%).

The relative poverty threshold established as 60% of equivalent national median
income and relative wealth line established as three median estimated by means of
Bernstein estimator are equal to 1181.85 PLN and 5909.23 PLN, respectively. The
estimates of poverty index (head-count ratio,(8)) and wealth index (9) for each
macroregion based on this thresholds are presented in table 8, In the table there are also
the poverty thresholds and wealth lines estimated separately for each macroregion.
Indexed values of poverty and wealth ratios (Poland=100%) have been presented in
figure 3.

Table 8. Estimated poverty and wealth measures for macroregions

Macroregion Poverty line  Head-count ratio Wealth line Wealth index
Central 1394.94 12.73 6974.68 5.42
Southern 1247.39 12.04 6236.93 1.52
Eastern 1085.24 20.12 5426.19 1.68
North-western 1242.65 12.99 6213.26 1.63
South-western 1211.82 12.49 6059.09 1.81
Northern 1204.10 16.72 6020.48 2.26
Poland 1181.85 14.46 5909.23 2.56

Source: author’s calculations based on HBS sample 2014.
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Fig. 3. Poverty and wealth measures for macroregions (Poland=100)

Source: author’s elaborations.

It is worth noting that the ordering of Polish macroregions by poverty rates is
different from the ordering by inequality levels- for some regions (Central) relatively
high income inequality do not coincide with high poverty rates, and inversely, relatively
low inequality do not always induce low poverty rates (North-Western region). On the
other hand, for highly unequal distributions (Central, Eastern), one can observe large
discrepancy between poverty and wealth rates (figure 3), indicating different within-
region inequality patterns- the large amount of inequality due to extremely low income

groups (the case of Eastern region) or extremely high ( for Central region).

6. Conclusion

Analysis of income and wage distribution is strictly connected with the estimation of
inequality and poverty measures based on quantiles. Therefore, for income data coming
usually from sample surveys, it becomes crucial to use the quantile estimators
presenting satisfying statistical properties. In the paper, the Huang-Brill and Bernstein
estimators have been proposed and analysed from the point of view of their sampling
errors under several income distribution models. In the simulations studies the
properties of these estimators have been compared with the classical one which is most
often applied in practice. The results of the calculations reveal that the Bernstein
estimator performs better than its competitors- its root mean squared error (RMSE) is
much smaller than the one observed for the other quantile estimators and its relative

bias (BIAS) is also smaller, especially when the quantiles of higher orders are taken into
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regard. Consequently, the Bernstein estimator has been applied to the estimation of
various inequality measures for NUTS 1 regions in Poland.

The reliable quantile estimators, as well as various inequality, poverty and wealth
measures based on them, enabled us to analyse income distributions in Poland by
macroregion. The analysis revealed substantial discrepancies between regions in
Poland, what can be the basis of further analysis for economists and social-policy

makers.
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Abstract

Kwantyle rozktadu dochodow sa wykorzystywane do szacowania réoznorodnych miar nieréwnosci, analiz

ubostwa i bogactwa gospodarstw domowych. Najczgséciej sg one szacowane przy uzyciu klasycznego
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estymatora, bedacego statystyka pozycyjna odpowiedniej rangi. Glownym celem pracy jest porownanie
wlasno$ci klasycznego estymatora kwantyla z wlasnosciami estymatorow zaproponowanych przez
Huanga i Brilla oraz Bernsteina. W celu zbadania obcigzen i bledow $redniokwadratowych estymatorow
kwantyli 1 miar nierowno$ci opartych na kwantylach przeprowadzono eksperymenty Monte Carlo,
rozwazajac r6zne liczebnosci prob i rozne rozktady. W pracy przedstawiono wyniki badan dla populacji o
rozktadach lognormalnym i Daguma, ktére najczeSciej charakteryzujaca dochody gospodarstw
domowych. Wyniki eksperymentéw symulacyjnych wskazuja, ze sposrod rozwazanych estymatoréw
najlepsze wilasnosci ma estymator Bernsteina, dlatego zostal on wykorzystany do oszacowania miar
nierownosci dochodowych, ubostwa i bogactwa w Polsce w 2014 r. z uwzglednieniem podziatu kraju na
makroregiony. Analizy przeprowadzono w oparciu o dane pochodzace z Badania Budzetéw Gospodarstw

Domowych prowadzonego przez Gtowny Urzad Statystyczny.

Stowa kluczowe: rozktad dochodu, nierdwno$é, ubostwo, bogactwo, estymator kwantyla.
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