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Abstract

Quantiles of income distributions are often applied to the estimation of various 
inequality, poverty and wealth characteristics. They are traditionally estimated using 
the classical quantile estimator based on a relevant order statistic. The main objective 
of the paper is to compare the classical, Huang-Brill and Bernstein estimators for 
these measures from the point of view of their statistical properties. Several Monte 
Carlo experiments were conducted to assess biases and mean squared errors of income 
distribution characteristics for different sample sizes under the lognormal or Dagum 
type-I models. The results of these experiments are used to estimate inequality, poverty 
and wealth measures in Poland by macroregion on the basis of micro data originating 
from the Household Budget Survey 2014.
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1. Introduction

Statistical measures based on quantiles are frequently applied to the 
analysis of income distribution as they comprise many popular inequality 
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and poverty indices and indicators. Simple dispersion ratios, defined as the 
ratios of the income of the richest quantile over that of the poorest quantile, 
usually utilise deciles and quintiles, but in principle, any quantile of income 
distribution can be used. A version of the decile dispersion ratio using 
the ratio of the 10th over the 40th percentile which has recently become 
popular is the so-called Palma ratio. Another popular inequality measure 
based on deciles is the coefficient of maximum equalisation, also known as 
the Schutz index or the Pietra ratio. Contrary to the well-known Gini ratio, 
the  quantile-based dispersion ratios are focused on income differences 
located in the tails of the distribution rather than in the middle groups. 
They can be used in a supplementary way to overcome the shortcoming of 
the Gini index, namely, that it is proportionally oversensitive to changes 
in the middle of the distribution. More sophisticated measures of income 
inequality have been constructed using differences (or ratios) between 
population and income quantiles. Probably the first such measure was the 
Holme’s coefficient standardised by Bortkiewicz, which is based on the 
quantiles of order 0.5. The concentration curve and corresponding synthetic 
concentration coefficient proposed by Zenga are also defined in terms of 
quantiles of a size distribution and the corresponding quantiles of the first- 
-moment distribution.

Quantile-based inequality measures are traditionally estimated using 
the classical quantile estimator based on a relevant order statistic. In many 
applications these estimates are presented without any information about 
their precision, which must be a basis for further statistical inference, e.g. 
statistical hypothesis testing and interval estimation. The problem can be 
neglected to some extent if we consider the overall population or sample 
size large enough to apply the asymptotic theory; one should be conscious 
however, that for heavy-tailed income distributions the sufficient sample size 
can be very large indeed. For some population divisions (by age, occupation, 
family type or geographical area) these simple methods have been shown to 
be seriously biased, and the estimation errors were found to be far beyond 
the values that can be accepted by social policy-makers for making reliable 
policy decisions (Jędrzejczak 2015).

This paper addresses the problem of statistical properties of the 
estimators of popular inequality measures based on quantiles. After a brief 
description of such measures (section 2), selected quantile estimators are 
introduced (section 3). Section 4 comprises the results of Monte Carlo 
experiments conducted to assess biases and mean squared errors of quantile 
estimators and their functions. In the last part of the paper (section 5) 
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we present the application of quantile-based inequality, poverty and 
wealth indices to Polish Household Budget Survey (HBS) data divided by 
macroregions. 

2. Selected Statistical Inequality Measures Based on Quantiles

Distribution quantiles of a random variable X, which is identified with 
a  household or personal income, or the estimators of these quantiles, have 
been applied in the construction of simple inequality indices such as the 
quintile dispersion ratio and decile dispersion ratio (for details, see Panek 
2011).

The quintile dispersion ratio has the following form:
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where ,Q Q. .0 8 0 2 are quintiles, respectively, the fourth and the first.

The quintile dispersion ratio can also be defined as the ratio of the sum 
of incomes of the richest 20% of the population to the sum of incomes of the 
poorest 20%:
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where GKj is j-th quintile group.

The measure (2) can be interpreted as the ratio of the average income 
of the richest 20% of the population to the average income of the poorest 
20% of the population and is usually calculated on the basis of equivalised 
income.

Similar ratios can also be calculated for other quantiles, for instance 
deciles or percentiles (95th and 5th) of income distributions. Using the first 
and ninth decile we can obtain the following decile dispersion ratio:
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where ,Q Q. .0 09 1 are deciles, respectively, the ninth and the first:
and
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where GDj is j-th decile group.
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The reciprocal of the decile dispersion ratio defined by (4) takes values 
from the interval (0,1) and is called the dispersion index for the end portions 
of the distribution:
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If the index K1:10 is closer to 1, the inequality is lower (mean incomes in 
the extremal decile groups are the same).

A popular inequality measure based on income shares received by 
subsequent decile groups is the coefficient of maximum equalisation, also 
known as the Schutz index or the Pietra ratio: 
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 where Sj is income share of the j-th decile group 

in the total income. 

The measure (6) can be interpreted as the portion of the total income that 
would have to be redistributed (taken from the richer half of the population 
and given to the poorer half) for there to be income equality.

During a thorough income distribution analysis the problem of inequality 
measurement is usually interrelated with the estimation of poverty indices. 
To obtain reliable poverty characteristics it becomes crucial to define and 
estimate the poverty threshold .zu  There are numerous definitions of this 
threshold, taking into consideration an absolute or relative approach. 
The  relative poverty line utilised by Eurostat is . ,z M0 6 .u 0 5=  where M .0 5 is 
the median of a random variable X. 

On the basis of the poverty line, the popular head-count ratio (at-risk-of- 
-poverty rate) can be determined: ,F zW . .zg ub u= ^ h  where F is the distribution 
function of X. 

The poverty threshold and head-count ratio can be estimated using the 
following estimators: 
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where , , ...,X X Xn1 2  is a random sample and Me is the median estimator 
established on the basis of the random sample. 

Wealth indices, concentrated on the upper part of income distribution, 
are utilised to measure the share of the best-off in a population of 
households. Among others, a wealth line can be defined as z M3 .b 0 5=  
(Brzeziński 2014, Peichl, Schaefer & Scheicher 2008) and the wealth index 
based on it is given by: .W F z1 –b b= ^ h  These measures can be estimated 
using the following formulas: 

 ,z M3 .b 0 5=t  (9)

and 
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where , , ...,X X Xn1 2  is a random sample and Me is the median estimator.

Examples of more sophisticated inequality measures, focused on each 
and every part of an income distribution, are the Gini and Zenga indices. 
The popular Gini index based on the Lorenz curve is not considered in this 
paper. The synthetic Zenga index is based on the concentration curve that 
can be considered a point concentration measure, as it is sensitive to changes 
at every “point” of the income distribution. The Zenga point measure of 
inequality is based on the relation between income and population quantiles 
(Zenga 1990, Jędrzejczak 2012, Greselin, Pasquazzi & Zitikis 2013, Arcagni 
2016):
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where ( )x F pp
1–=  denotes the population p-quantile and ( )x Q p*
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1–=  is the 

corresponding income quantile. Therefore, the Zenga approach consists of 
comparing the abscissas at which F(x) and Q(x) take the same value p.

The Zenga synthetic inequality index is defined as simple arithmetic 
mean of point concentration measures , , .Z p 0 1p !

3. Quantile Estimators and Their Properties

Let X be a continuous random variable with distribution function F and 
let Q F pp

1–= ^ h be the p-quantile of the random variable X, where , .p 0 1! ^ h  
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If F is a continuous and strictly increasing distribution function, the pth 
quantile always exists and is uniquely determined. 

The well-known estimator of the quantile Qp is the statistic:

 ( ) : ( ) ,infQ F p x F x pp n n
1– $= =t " ,  (12)

where Fn(x) is the empirical distribution obtaining on the basis of a n-element 
random sample , , ...,X X Xn1 2 .

The problem of quantile estimation has a very long history. In the subject 
literature numerous nonparametric (distribution-free) quantile estimators 
have been presented. Their particular expressions depend on the underlying 
empirical distribution function definition.

The classical quantile estimator obtained for the distribution 
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where X( )
( )
k
n  is an order statistic of rank k.

Among other estimators of quantiles, Qp we can mention the standard 
estimator, Huang-Brill estimator, Harrell-Davis estimator and Bernstein 
estimator, to name just a few (Huang & Brill 1999, Harrell & Davis 1982).

By means of the empirical distribution level crossing, which has the 
following form:
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we obtain the Huang-Brill estimator of the pth quantile Qp:
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It can easily be noticed that for p = 0.5 the estimator of the quantile Q0.5 
is the order statistic .X( )

n
n

2 1+a k9 C
Another interesting quantile estimator is the Bernstein estimator given 

by:
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More examples of quantile estimators can be found in the papers of 
Pekasiewicz (2015) and Zieliński (2006).

4. Analysis of Monte Carlo Experiments

The main objective of the Monto Carlo experiments conducted in 
the study was to assess the properties of selected estimators of quantiles. 
We  were especially interested in their biases and sampling variances, i.e. 
the components of their sampling errors. The following estimators have 
been taken into consideration: the classical quantile estimator (13), Huang-
Brill estimator (15) and Bernstein estimator (17). The estimators presenting 
the best performance were further applied to evaluate the quantile-based 
inequality measures for income distributions in Poland by macroregion.

In the experiments two different probability distributions were utilised 
as population models: lognormal distribution, ( , ),LG µ σ  defined by the 

following density function exp
ln

f x
x

x
2

1
2

–
–

2

2

σ π σ
µ

=^ f ^h h p, x > 0 and  

Dagum distribution ( , , ),D a bd  known also as the Burr type-III 
distribution, with the density function of the form (Kleiber & Kotz 2003) 

,f x ab x b
x1a a a1 1– – –– d= +d d d^ a ah k k  x > 0.

The sets of parameters of both theoretical distributions were established 
on the basis of real income data originating from the Polish HBS and 
administrative registers, comprising a large variety of subpopulations 
differing in the level of income inequality, which have been observed over 
the last two decades. The sample sizes were fixed for each variant as n = 500,  
n = 1000, n = 2000. The number of repetitions of the Monte Carlo 
experiment was N = 20,000. The simulated sample spaces were used to 
assess, for each estimator, its empirical bias and standard error. 

Tables 1 and 2 present the results of the calculations for three quantile 
estimators: classical, Huang-Brill and Bernstein, for sample sizes 500 and 
1000.
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Table 1. Properties of Selected Quantile Estimators for Sample Size n = 500

Distribution p
Q p
t Q p

HBt Q p
Brst

BIAS RMSE BIAS RMSE BIAS RMSE
LG(8, 0.6) 0.1 –0.215 4.587 –0.489 4.639 0.283 4.419

0.2 –0.122 3.839 –0.333 3.833 0.194 3.739
0.3 –0.100 3.535 –0.285 3.550 0.153 3.445
0.7  0.230 3.574 –0.118 3.548 0.103 3.471
0.8 –0.161 3.824 –0.158 3.856 0.095 3.728
0.9 –0.319 4.582 –0.306 4.600 0.077 4.427

LG(8.3, 0.8) 0.1 –0.270 6.095  0.768 6.276 0.448 5.883.
0.2 –0.150 5.071  0.450 5.140 0.297 4.928
0.3 –0.089 4.715  0.382 4.756 0.271 4.614
0.7  0.314 4.754 –0.151 4.703 0.176 4.619
0.8 –0.158 5.070 –0.195 5.113 0.225 4.955
0.9 –0.316 6.077 –0.329 6.120 0.259 5.900

D(0.7, 3.6, 3800) 0.1 –0.280 5.558  0.564 5.534 0.279 5.332
0.2 –0.174 3.957  0.341 3.969 0.105 3.841
0.3 –0.133 3.298  0.177 3.298 0.073 3.216
0.7  0.167 2.927 –0.104 2.924 0.065 2.846
0.8 –0.127 3.247 –0.102 3.234 0.097 3.165
0.9 –0.203 4.240 –0.212 4.254 0.196 4.128

D(0.7, 2.8, 3800) 0.1 –0.315 7.041 –0.737 7.174 0.433 6.782
0.2 –0.181 5.065  0.437 5.146 0.213 4.918
0.3 –0.092 4.228  0.272 4.283 0.184 4.133
0.7  0.241 3.766 –0.124 3.748 0.118 3.662
0.8 –0.127 4.159 –0.187 4.138 –0.186 4.061
0.9 –0.342 5.428 –0.279 5.482 –0.218 5.274

Source: authors’ own calculations in Mathematica.

In particular, the tables show the relative biases and relative root mean 
squared errors of these estimators obtained for predefined population 
models – lognormal and Dagum – differing across the experiments in the 
overall inequality level. Similar experiments for the Gini and Zenga ratios 
were reported in Jędrzejczak (2015).

Analysing the results of the calculations it becomes obvious that the 
Bernstein estimator performs better than its competitors – its root mean 
squared errors (RMSE) are much smaller than those observed for the other 
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quantile estimators and its relative biases (BIAS) are also smaller, especially 
when the quantiles of higher orders are taken into account.

Table 2. Properties of Selected Quantile Estimators for Sample Sizes n = 1000

Distribution p
Q p
t Q p

HBt Q p
Brst

BIAS RMSE BIAS RMSE BIAS RMSE
LG(8, 0.6) 0.1 –0.087 3.240  0.254 3.248 0.132 3.165

0.2 –0.079 2.718  0.139 2.726 0.108 2.669
0.3 –0.039 2.504  0.133 2.511 0.095 2.481
0.7  0.089 2.528 –0.082 2.521 0.042 2.469
0.8 –0.077 2.712 –0.077 2.712 0.047 2.680
0.9 –0.131 3.245 –0.131 3.245 0.041 3.169

LG(8.3, 0.8) 0.1 –0.097 4.350  0.359 4.373 0.302 4.220
0.2 –0.088 3.581  0.195 3.592 0.177 3.571
0.3 –0.057 3.336  0.176 3.346 0.134 3.271
0.7  0.169 3.338 –0.061 3.324 0.108 3.280
0.8 –0.099 3.620 –0.099 3.620 0.070 3.510
0.9 –0.116 4.339 –0.116 4.339 0.089 4.208

D(0.7, 3.6, 3800) 0.1 –0.182 3.923  0.313 3.916 0.086 3.803
0.2 –0.068 2.800  0.141 2.776 0.069 2.741
0.3 –0.105 2.349  0.114 2.346 0.000 2.303
0.7  0.010 2.054 –0.080 2.049 0.043 2.013
0.8 –0.085 2.298 –0.078 2.287 0.032 2.256
0.9 –0.083 2.984  0.116 2.991 0.121 2.915

D(0.7, 2.8, 3800) 0.1 –0.156 5.073  0.368 5.069 0.221 4.493
0.2 –0.112 3.580  0.232 3.589 0.082 3.509
0.3 –0.080 3.015  0.144 2.991 0.062 2.958
0.7  0.137 2.652 –0.063 2.681 0.073 2.599
0.8 –0.084 2.956 –0.077 2.935 0.069 2.900
0.9 –0.133 3.846 –0.112 3.848 0.147 3.774

Source: authors’ own calculations in Mathematica.

The bias and RMSE of the Huang-Brill estimator are similar to the 
respective values for the classical quantile estimator. It is worth noting that 
for all cases biases are rather negligible, so the total errors are dominated by 
sampling variances. In general, the estimation errors are higher for extremal 
quantile orders, for the heavy-tailed Dagum model, and they also tend to 
increase as income inequality increases. 
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Table 3. Properties of the Quintile Dispersion Ratio Based on Quantile Estimators

Distribution n

Quintile Dispersion Ratio

W :
( )
20 20
1t  (stand.) W :

( )
20 20
1t  (Huang-Brill) W :

( )
20 20
1t  (Bernstein)

BIAS RMSE BIAS RMSE BIAS RMSE
LG(8.0, 0.6) 500 0.113 4.724 –0.387 4.725 0.054 4.532

1000 0.070 3.335 –0.194 3.329 0.038 3.239
LG(8.1, 0.7) 500 0.063 5.484 –0.388 5.453 –0.014 5.265

1000 0.011 3.868 –0.157 3.859 –0.017 3.756
LG(8.3, 0.8) 500 0.134 6.252 –0.549 6.189 0.042 6.004

1000 0.068 4.444 –0.231 4.473 0.027 4.308
D(0.7, 3.6, 3800) 500 0.156 4.454 –0.262 4.442 0.091 4.275

1000 0.072 3.154 –0.137 3.120 0.046 3.068
D(0.8, 3.0, 3200) 500 0.174 4.978 –0.323 4.997 0.125 4.794

1000 0.073 3.521 –0.155 3.492 0.053 3.417
D(0.7, 2.8, 3800) 500 0.235 5.753 –0.287 5.691 0.136 5.505

1000 0.080 4.044 0.213 4.040 0.046 3.930

Source: authors’ own calculations in Mathematica.

Table 4. Properties of the Decile Dispersion Ratio Based on Quantile Estimators

Distribution n

Decile Dispersion Ratio

W :
( )
10 10
1t  (stand.) W :

( )
10 10
1t  (Huang-Brill) W :

( )
10 10
1t  (Bernstein)

BIAS RMSE BIAS RMSE BIAS RMSE
LG(8.0, 0.6) 500 0.126 6.174 –0.631 6.096 0.021 5.882

1000 0.065 4.327 –0.324 4.304 0.017 4.191
LG(8.1, 0.7) 500 0.124 7.197 –0.630 7.104 0.013 6.868

1000 0.084 5.088 –0.273 5.028 0.019 4.926
LG(8.3, 0.8) 500 0.186 8.134 –0.773 8.124 0.029 7.758

1000 0.124 5.815 –0.352 5.766 0.037 5.615
D(0.7, 3.6, 3800) 500 0.353 6.671 –0.439 6.589 0.181 6.344

1000 0.162 4.702 –0.211 4.651 0.082 4.543
D(0.8, 3.0, 3200) 500 0.347 7.354 –0.493 7.402 0.234 7.002

1000 0.097 5.179 –0.266 5.193 0.039 5.009
D(0.7, 2.8, 3800) 500 0.554 8.598 –0.551 8.470 0.283 8.181

1000 0.181 6.003 –0.298 5.948 0.066 5.800

Source: authors’ own calculations in Mathematica.



Properties of Selected Inequality Measures… 61

The next step of the experiment was to study basic statistical properties of 
the estimators of income inequality measures: W :

( )
10 10
1  and W :

( )
20 20
1  given by the 

formulas (1) and (3). These estimators can be obtained as functions of the 
subsequent quantile estimators mentioned above. The properties of quintile 
and decile dispersion ratios are illustrated in Tables 3 and 4. All the values 
are presented as percentages relative to their corresponding population 
parameters.

Analysing the results of the calculations presented in Tables 3 and 4 it 
becomes obvious that the estimators of quintile and decile dispersion ratios 
based on the Bernstein quantile estimator outperform the estimators based 
on the classical and Huang-Brill estimators of quantiles. For the Bernstein 
estimator, the biases and mean squared errors turned out to be substantially 
smaller for most cases.

5. Application of Inequality Measures to the Analysis of Income  
Distribution in Poland

The inequality measures based on deciles and quintiles, as well as the 
Zenga indices, have been applied to income inequality analysis in Poland 
by macroregion (NUTS1), based on the HBS 2014 sample. They include the 
decile and quintile dispersion ratios, the reciprocal of the decile dispersion 
ratio K, the coefficient of maximum equalisation E and the synthetic Zenga 
index Z. To obtain reliable estimates of these coefficients we used the 
Bernstein quantile estimator, which turned out to have the highest precision 
(Tables 1 and 2). 

Table 5. Numerical Characteristics of Available Income in Macroregions

Macroregion Number 
of households Minimum Maximum Average Standard 

deviation
Central 8046 11.00 155017.49 4240.21 3790.53
Southern 7433 12.50 37152.00 3634.03 2179.59
Eastern 6246 10.00 84032.90 3461.45 2876.23
North-Western 5658 3.00 43493.45 3772.15 2611.00
South-Western 3971 1.67 37200.00 3591.07 2337.83
Northern 5575 9.00 126739.54 3646.44 3225.72
Poland 36929 1.67 155017.49 3755.33 2959.95

Source: authors’ calculations based on the HBS 2014 sample.
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Basic characteristics of the HBS sample, divided by macroregion, are 
presented in Table 5. Table 6 shows the results of the approximation of the 
empirical income distributions by means of the Dagum model using the 
maximum likelihood method. Additionally, in Figure 1 there are histograms 
and fitted Dagum density curves describing income distributions in Poland 
by macroregion.

Table 6. Approximation of Income Distributions in NUTS1 by Means  
of the Dagum Model

Macroregion
Dagum distribution parameters Overlap 

measured a b
Central 0.790 2.8044 3839.630 0.982
Southern 0.669 3.618 3800.167 0.970
Eastern 0.756 3.051 3286.467 0.971
North-Western 0.743 3.233 3687.076 0.964
South-Western 0.722 3.301 3587.800 0.970
Northern 0.718 3.158 3544.934 0.979
Poland 0.747 3.125 3611.017 0.975

Source: authors’ calculations based on the HBS 2014 sample.

Analysing the outcomes of the approximation presented in Figure 1 one 
can observe very high consistency between the empirical distributions and 
the theoretical ones. This is also confirmed by the values of a goodness-of-fit 
measure (the overlap coefficient) calculated for each region and the whole 
country and presented in the last column of the Table 6.

Table 7. Estimated Inequality Measures for Macroregions

Macroregion W :
( )
20 20
1 W :

( )
20 20
2 W :

( )
10 10
1 W :

( )
10 10
2 K :1 10 E Zenga

Central 3.049 6.939 5.494 12.085 0.083 26.491 0.386
Southern 2.595 4.962 4.283 7.577 0.132 21.667 0.269
Eastern 2.904 6.147 4.927 9.908 0.101 24.740 0.348
North-Western 2.750 5.577 4.742 8.614 0.116 23.221 0.308
South-Western 2.789 5.375 4.536 8.172 0.122 23.017 0.295
Northern 2.828 6.039 4.814 9.841 0.102 24.412 0.347
Poland 2.819 5.916 4.843 9.526 0.105 22.000 0.338

Source: authors’ calculations based on the HBS 2014 sample.
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The estimated values of inequality measures such as the decile and 
quintile dispersion ratios, the reciprocal of the decile dispersion ratio K 
and the synthetic Zenga index Z, obtained on the basis of implementation 
of the Bernstein estimator, are given in Table 7. The indexed values of 
selected inequality measures from Table 7 have been used to order Polish 
macroregions by inequality level, as is demonstrated in Figure 2. They also 
show the differentiation of income inequality across regions.

The estimated values of quintile and decile share ratios, as well as 
the values of synthetic Zenga inequality measures, indicate the Central 
macroregion as the one with the highest income inequality level. This  is 
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Fig. 1. Income Distributions for NUTS1 and Fitting by Means of the Dagum Model
Source: authors’ elaborations in R.
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particularly evident for extremal income groups, e.g. the income of the 
richest 10% of households is 12 times bigger than the income of the poorest 
10% (W :

( )
10 10
2  = 12.085). On the other hand, the lowest values of all inequality 

measures (except for the K index) have been observed for the Southern 
macroregion. Three macroregions: Central, Eastern and Northern present 
income inequality above the national level, while in the remaining three: 
North-Western, South-Western and Southern it was found to be substantially 
lower than for the whole country (Figure 2). In general, 22% of the total 
income of Polish households would have to be redistributed from the richer 
to the poorer groups for there to be income equality (E = 22%).
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Fig. 2. Selected Inequality Measures for Macroregions (Poland = 100)
Source: authors’ elaborations.

The relative poverty threshold established as 60% of equivalent national 
median income, and the relative wealth line established as the median 
estimated by means of the Bernstein estimator, are equal to 1181.85 PLN and 
5909.23 PLN, respectively. Estimates of the poverty index (head-count ratio 
(8)) and wealth index (9) for each macroregion based on these thresholds are 
presented in Table 8. Also contained in the table are the poverty thresholds 
and wealth lines estimated separately for each macroregion. The indexed 
values of poverty and wealth ratios (Poland = 100%) are presented in 
Figure 3.
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Table 8. Estimated Poverty and Wealth Measures for Macroregions

Macroregion Poverty line Head-count 
ratio Wealth line Wealth index

Central 1394.94 12.73 6974.68 5.42
Southern 1247.39 12.04 6236.93 1.52
Eastern 1085.24 20.12 5426.19 1.68
North-Western 1242.65 12.99 6213.26 1.63
South-Western 1211.82 12.49 6059.09 1.81
Northern 1204.10 16.72 6020.48 2.26
Poland 1181.85 14.46 5909.23 2.56

Source: authors’ calculations based on the HBS 2014 sample.
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Fig. 3. Poverty and Wealth Measures for Macroregions (Poland = 100)
Source: authors’ elaborations.

It is worth noting that the ordering of Polish macroregions by poverty 
rates is different from the ordering by inequality levels – for some regions 
(Central) relatively high income inequality does not coincide with high 
poverty rates, and inversely, relatively low inequality does not always induce 
low poverty rates (North-Western region). On the other hand, for highly 
unequal distributions (Central, Eastern), one can observe a large discrepancy 
between poverty and wealth rates (Figure 3), indicating different within- 
-region inequality patterns – a large amount of inequality due to extremely 
low income groups (the case of the Eastern region) or extremely high income 
groups (the Central region).
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6. Conclusion

Analysis of income and wage distribution is strictly connected with the 
estimation of inequality and poverty measures based on quantiles. Therefore, 
for income data usually originating from sample surveys, it becomes crucial 
to use the quantile estimators that present satisfying statistical properties. 
In this paper, the Huang-Brill and Bernstein estimators have been proposed 
and analysed from the point of view of their sampling errors under several 
income distribution models. In the simulation studies the properties of these 
estimators have been compared with the classical one, which is most often 
applied in practice. The results of the calculations reveal that the Bernstein 
estimator performs better than its competitors – its root mean squared 
error (RMSE) is much smaller than the one observed for the other quantile 
estimators and its relative bias (BIAS) is also smaller, especially when 
the quantiles of higher orders are taken into account. Consequently, the 
Bernstein estimator has been applied to the estimation of various inequality 
measures for NUTS1 regions in Poland.

The reliable quantile estimators, as well as various inequality, poverty and 
wealth measures based on them, enabled us to analyse income distributions 
in Poland by macroregion. The analysis revealed substantial discrepancies 
between regions in Poland, which can be the basis for further analysis by 
economists and social-policy makers.
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Abstract

Własności wybranych miar nierównomierności opartych na kwantylach  
i ich zastosowanie w analizach rozkładów dochodów według makroregionów  
w Polsce

Kwantyle rozkładu dochodów są wykorzystywane do szacowania różnorodnych miar 
nierówności, analiz ubóstwa i bogactwa gospodarstw domowych. Najczęściej są one 
szacowane z użyciem klasycznego estymatora, będącego statystyką pozycyjną odpo-
wiedniej rangi. Głównym celem pracy jest porównanie własności klasycznego esty-
matora kwantyla z własnościami estymatorów zaproponowanych przez M.L. Huanga 
i P.H. Brilla oraz Bernsteina. W celu zbadania obciążeń i błędów średniokwadratowych 
estymatorów kwantyli i miar nierówności opartych na kwantylach przeprowadzono eks-
perymenty Monte Carlo, rozważając różne liczebności prób i różne rozkłady. W pracy 
przedstawiono wyniki badań dla populacji o rozkładach lognormalnym i Daguma, które 
najczęściej charakteryzującą dochody gospodarstw domowych. Wyniki eksperymentów 
symulacyjnych wskazują, że spośród rozważanych estymatorów najlepsze własności ma 
estymator Bernsteina, dlatego został on wykorzystany do oszacowania miar nierówno-
ści dochodowych, ubóstwa i bogactwa w Polsce w 2014 r. z uwzględnieniem podziału 
kraju na makroregiony. Analizy przeprowadzono na podstawie danych pochodzących 
z badania budżetów gospodarstw domowych prowadzonego przez Główny Urząd Sta-
tystyczny.

Słowa kluczowe: rozkład dochodu, nierówność, ubóstwo, bogactwo, estymator kwantyla.


