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Abstract

The article combines methodology applied for time series with elements of spatial 
econometrics. Its aim is to present a modified method of spatial modelling using 
selected stochastic processes and the application of that method in economics and 
other fields of science. The research hypothesis verified in this work can be described 
as follows: generalised to a multivariate case, Brownian motion processes are a useful 
tool in econometrics modelling as well as in the analysis of variability and correlation in 
space. The multifractional Brownian motion process is applied to conduct an analysis 
of the degree and variability of environmental pollution. The article comprises an 
introduction, a theoretical part in which concepts connected with the class of stochastic 
processes in question are clarified, and an empirical part, where selected applications 
of the aforementioned method are discussed.

Keywords: stochastic process, Hölder function, spatial modelling, variability analysis.
JEL Classification: C15, C32, C33, C51.

1. Introduction

Phenomena and processes that are the subject of studies in economics, 
environmental science and epidemiology take place in specified spatial- 
-temporal conditions. Analysing these processes, we notice the influence of 
space and time on their course.

This article describes two types of modelling approach. Both – 
a  methodology of time series including Brownian motion processes, and 
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elements of spatial econometrics, in particular methods of new economic 
geography – are applied. Special attention is paid to processes with 
a  so-called long memory. As early as 1952, T. Hagerstrand pointed to the 
existence of the memory effect in the spread of economic phenomena, while 
P. R. Krugman (1991) introduced the development of quantitative methods in 
spatial analyses. The generalised multifractional Brownian motion process is 
applied in the present work in the modelling of the variability of spatial data 
and in the study of spatial correlation. Pointwise Hölder exponents are used 
in the analysis of variability in space (Ayache & Lévy Véhel 1999, Mastalerz- 
-Kodzis 2003). Selected elements of statistics and spatial econometrics are 
applied (Paelinck & Klaassen 1983, Suchecki 2010). Methods from time 
series analysis are implemented in the modelling of data in space and are 
generalised to a multivariate case (Lévy Véhel & Mendivil 2011, Falconer 
& Lévy-Véhel 2008, Ayache & Taqqu 2004, Barrière 2007, Echelard, Lévy 
Véhel and Barrière 2010).

Theoretical considerations connected with the presented topic were 
focused on, among others, the following works: Mastalerz-Kodzis (2003), 
Mastalerz-Kodzis (2016b), and Mastalerz-Kodzis and Pośpiech (2017). 
The aim of the article is to present a modified method of spatial modelling 
using selected stochastic processes and the application of that method in 
economics and other fields of science. The research hypothesis verified in 
this work can be described as follows: generalised to a multivariate case, 
Brownian motion processes are a useful tool in econometrics modelling as 
well as in the analysis of variability and correlation in space. The article is 
composed of two parts: theoretical and empirical.

2. Random Fields

When analysing phenomena and processes that are the subject of studies 
in economics, environmental science and epidemiology, we notice the 
influence of space and time on their course and form. Moreover, in almost 
all cases, the changes taking place are of a random character. Therefore, we 
must study them in the categories of random fields.

Let , , ,Y i k1i f=  be a variable which undergoes random fluctuations in 
space, then Y Y Yk T1 f=6 @  k – a dimensional random field, e.g. a function 
of the form : , ,Y D R D Rk 3"# 1Ω  such that for each x D0!  the value 

,Y x0 ω^ h is a k-dimensional random vector determined on a set probabilistic 
space , , ,A PΩ^ h  whereby , , ,R x x t3

1 2= ^ h" ,  while ,x x1 2 stand for longitude 
and latitude, and t stands for the time variable. 
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Each of the components of vector Y is a random field, e.g. the function 
: , , , ,Y D R i k1i

1"# fΩ =  such that for each x D0!  value ,Y xi 0 ω^ h is 
a random variable. If we determine a third time variable, then the random 
field ,Y x ω^ h is a static field and describes the course of an economic 
phenomenon in space; if, on the other hand, the variable undergoes 
fluctuations in time, then the random field also describes the dynamics of 
the examined phenomenon.

We can distinguish the following classes of random fields:
– homogeneous – invariable in regard to translation in R3, e.g. 

m x t m x0+ =^ ^h h (expected constant value) and , ,C x t x t C x x1 0 2 0 1 2+ + =^ ^h h 
– the covariance function for any , ,x x t R1 2 0

3!^ h ,
– isotropic, for which the function of medium value and the correlation 

function are invariable in regard to rotations in R3 (correlation depends on 
the distance between points).

We can prove that the multifractional Brownian motion is an 
isotropic, inhomogeneous random field, and that ,E Y x 0ω =^ ^ hh  and 

, .C x y x y x y2
1 – –= +^ ^h h

We agree on the following symbols: Y $^ h – the level of the examined 
spatial-temporal phenomenon, X $^ h – factors determining the phenomenon 
level, u $^ h – a random field. Then: , .f Y X u 0$ $ $ =^ ^ ^ ^h h hh  The defined values 
depend on the spatial argument (of the point in the Euclidean space).

3. Modelling of Time Series with the Use of Stochastic Processes

3.1. General Remarks

The multifractional Brownian motion process (dependent on time) can be 
used in the modelling of time series. The process with stationary increments, 
which feature fractional parts of Brownian motion, depends on a constant 
parameter – the Hurst exponent. This exponent belongs to the range (0, 1) 
and divides the time series into: persistent – with a positive correlation 
between the subsequent implementations , ,H 1 2 1!^ ^ hh  and anti-persistent, 
in which the correlation is negative , .H 0 1 2!^ ^ hh  A general case is 
considered below – processes dependent on the Hölder function. Fractional 
processes are an exceptional example of multifractional ones, that is, the 
constant Hölder function is the value of the Hurst exponent.
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3.2. Pointwise Hölder Exponent

Let there be a function :f D D"0 01^ h and a parameter , .0 1!α ^ h  
Function f is a Hölder function of class ,Cα  if there are constants c > 0 and  
h0 > 0 such that for each x as well as all of h such that h h0 01 #  the following 
inequality is fulfilled (Daoudi, Lévy Véhe & Meyer 1998, Mastalerz-Kodzis 
2003):

 .f x h f x ch– #+ α^ ^h h  (1)

The Hölder function is of class Cα in the surrounding of any point 
from the domain. As parameter , ,0 1!α ^ h  we can consider fractional 
differentiation. The Hölder function is by definition a continuous function 
in the range. If the function is of class Cl, then the fractional value of the 
function graph equals one. When we only assume that the function is of 
class C0, then the graph can feature a fractional measure. When we interpret 
the value of the derivative, then the speed of value variation at the change 
of the argument is determined. Therefore, when time is the argument 
(or geographical coordinates of location), then the value of the derivative is 
the speed of the variation in time (or variation resulting from location on 
a plane).

Let .x D0 0! 1  Function :f D"0 is at point x0 a Hölder function of class 
,Cx0

α  if there are constants , c 02ε  such that for each ,x x x–0 0! ε ε+^ h the 
following inequality is fulfilled: 

 .f x f x c x x– –0 0# α^ ^h h  (2)

The Hölder point exponent of function f at point x0 is the number xf 0α ^ h  
expressed by the formula : .supx f Cf x0 0!α α= α^ h " ,  The Hölder function 
for function f is the function which to each of the points x D!  assigns the 
number .xfα ^ h
3.3. Multifractional Brownian Process

Let : , ,H 0 0 1t "3 ^h h6  be a Hölder function with an exponent a > 0. 
A multi-fractional Brownian motion process with function parameter Ht is 
a stochastic process B tHt ^ h defined for t 0$  by the formula (Ayache & Lévy 
Véhel 1999, Peltier & Lévy Véhel 1995, Mastalerz-Kodzis 2003):

     ,B t
H

t s s dB s t s dB s1 –– – –H t
t

H H H
t

2
1

0

0
– – –

–

t t t
1
2

1
2

1
2

Γ
=

+
+

3

^ ^ ^ ^ ^ ^ ^h h h h h h h9 C* 4##  (3)

where B is the standard Brownian motion process.
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The Hölder point exponents inform about the characteristics of the 
process. Among others, we note that the process does not feature stationary 
increments when the Hölder function is not constant, and the closer the 
values of the function are to zero, the bigger the variability of the graph; for 
function values close to one, the process is smoother. The regularity of the 
process measured with Hölder point exponents changes in the range (0, 1).

In the multifractional Brownian motion process, the Hölder function 
is a constant function, which means that the regularity of the process 
trajectory measured by this function also changes continuously. Further 
generalisation of the Brownian motion process is based on the replacement 
of the continuous Hölder function with an discontinuous one (Peltier & 
Lévy Véhel 1995). A generalised multifractional Brownian motion process, 
with function parameter H(t) and l – a real number, is process B t,H t 0!l ^ h" ,  
such that for each :t 0!

 ,B t e dB1–
, ,H H t

it

Dn
0 5

0 n
n

ξ
ξ=

3

λ

ξ

+
=

^ ^^h hh/ #  (4)

where :D 10 1ξ ξ=" , and for all : .n D1 n
n n1– 1$ #ξ λ ξ λ=" ,

The multifractional Brownian motion process can be generated with 
the use of random relocation of the segment midpoint method (Mastalerz- 
-Kodzis 2003, Mastalerz-Kodzis 2016a). Values of the Hölder function close 
to zero imply a bigger variability of the process; the closer the exponents are 
to 1, the smaller the variability.
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Fig. 1. Multifractional Brownian Motion Process: Hölder Function in the Form  
cosH t t62=^ ^h h and Process Simulation for the Set Function H(t)

Source: author’s own study (formula (5)).

Generally, also in this stage the value of the process is set by the formula: 

 ,B t
B t d B t d

G2 2
1 2––

*H t i H t

H t2 2–
=

+ +
+^ ^ ^

^ ^
^

h h h
h h

h
 (5)
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where t – d and t + d are the former points of time segment interval (0, 1) 
(see Figure 1).

According to the formula included in Peltier and Levy Vehel (1995) and 
Mastalerz-Kodzis (2003), we can also estimate pointwise Hölder exponents. 
Let us use the symbol ,B B i n0,i n H n

i # #= ^ h" , to indicate a Brownian 
motion process with the Hurst exponent H. Let Sn be given by the formula

S n B B1
1 –– , ,n i n i n

i

n

1
1

1–
= +

=
/  and 

/
.log

log
H n

S
1

2
– –n

nπ
=

^
^ h

h
 Then .lim H Hn n =

"3

Let 1 < k < n be the length of the neighbourhood (range) used to 
estimate function H. We are going to estimate a function for t from the 
range (k / n, 1 – (k / n)).

Then the estimator /H i n 1–t ^ ^ hh for S i n
m B B1 ––, , ,

/

/

k n j n j n
j i k

i k

1
2

2

–
= +

=

+
^ h /  is 

as follows:

 
/

.log
log

H n
S i

1
2

– –/
,

i n
k n

1–
π

=t ^
^

^
^ h

hh
h  (6)

4. Spatial Analyses with the Use of Hölder Function Properties

New Economic Geography (NEG) is a field of science and economics that 
deals with spatial aspects, among others, with the localisation of economic 
activity in the world (Suchecki 2010). In the 21st century, consideration 
of, for instance, the effects of globalisation or environmental pollution is 
possible, among others, with the use of NEG methods. It is considered that 
space (geographical location, distance, neighbourhood) has a significant 
influence on the formation of a given phenomenon or economic process. 

In this article, multifractional Brownian motions are, in spatial terms, 
a tool that enables us to conduct spatial analyses; a study of the variability 
of the examined phenomenon depending on location and time is conducted. 
Using the Hölder function we can describe e.g. the differentiation of 
environmental pollution levels.

The pointwise Hölder exponent is dependent only on parameter t and is 
responsible for the variability of a process around any point in the range. 
However, taking into consideration the NEG approach, we can inquire about 
the application of methodology to spatial economic analyses, conditioning 
the analyses on specific points in space and taking into consideration the 
memory effect.



Application of the Multifractional Brownian Motion Process… 89

According to the literature (Ayache & Taqqu 2004, Barrière 2007, 
Echelard, Lévy Véhel and Barrière 2010, Falconer & Lévy-Véhel 2008, 
Lévy Véhel & Mendivil 2011), the application of methodology in NEG or, 
more broadly, in spatial econometrics, in analysis of spatial autocorrelation, 
and in the study of the temporal and spatial memory effect with the Hölder 
function is justified.

Therefore, generalising to a multivariate case, the Hölder function is 
dependent on time t and also on a point on a plane (x, y). Therefore, we 
obtain function ,H x yt ^ h for 02α  and process , , .B x y t, ,H x yt l ^^ hh

Let H be a continuous function. The two-dimensional multifractional 
Brownian motion process is a process with stationary or non-stationary 
increments with a covariance function expressed by the formula:

 ,E B x B y x y x y– –. .H H
H x H y H x H y H x H y= ++ + +^ ^ ^^ ^
^ ^ ^ ^ ^ ^h hhh h
h h h h h h. (7)

The Hölder exponent measures the regularity of the function graph. 
If we assume that H is a differentiable function, then, with probability 1 for 
each (x, y), equality , ,x y H x yB ,H x yα =^ ^^ h hh  takes place. Works by Mastalerz- 
-Kodzis (2016b) and Mastalerz-Kodzis and Pośpiech (2017) describe the way 
of generating spatial processes dependent on the Hölder function. The first 
iterative stage of generating the multifractional Brownian motion process in 
space can be expressed by the following formula:

 , ,
, ( , )

B x y t
B x y B x y

2 2
1 2–

, , * ,

,

H x y
t t

i H x y

H x y1 1 1 1 2 2 2 2–– –
t t

t

=
+

+l ^ ^
^ ^

^
h h

h h
h

, (8)

where , , ,x y x y1 1 2 2^ ^h h are the former division points, ,H x y^ h is the value of 
the Hölder function for argument , ,x y^ h  whereas G in subsequent stages is 
a series of pseudorandom numbers that constitute the implementation of 
a variable with a normal distribution N(0, 1).

5. Application of the Pointwise Hölder Exponent in Economic  
and Epidemiological Spatial Analyses and in Environmental  
Pollution Tests

Multifractional Brownian motions in spatial terms can be used as a tool 
that allows multidirectional socio-economic studies to be conducted. 
Using the value of the Hölder function we can describe e.g. the level of 
environmental pollution and the effects of an explosion. We can prove that 
the aforementioned values, as well as other socio-economic characteristics, 
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are characterised by memory, which means that historical observations 
(considerably distant or not so distant) influence current values.

We assume that a subset of two-dimensional space D R2!  and a range of 
time T is given. We can consider the following cases:

– a fixed moment in time .t T0!  We can construct a map of the process 
values in a given moment of time (scan for t0);

– a fixed point ,x y R0 0
2!^ h  (e.g. geographical coordinates). In this case 

we consider a stochastic process with stationary or non-stationary increments 
dependent on t. We can use the methods for time series. In a given place

,x y R0 0
2!^ h  the process values are the values of any socio-economic 

characteristic. We analyse the variability of the characteristic in time in 
a two-dimensional chart and study the memory of the series. For example, 
in the surrounding area of a given point on a plane we analyse population 
density, the intensity of occurrence of a certain disease unit, etc. (Mastalerz- 
-Kodzis 2016a, Mastalerz-Kodzis & Pośpiech 2017);

– on a continuous basis in the whole area of the analyses, changes in time 
and space can be illustrated in a film, where at a steady pace the expansion 
of a given phenomenon takes place, whereas its intensity is expressed by the 
point values of Hölder exponents with consideration of the memory effect.

The article by Mastalerz-Kodzis and Pośpiech (2017) describes the 
application of the aforementioned methods to analyse the spread of 
environmental pollution resulting from an explosion (in a strictly defined 
place on a plane with a consideration of time). The article suggests 
a  computer simulation to measure the intensity of the spread of disease. 
In analyses of an economic nature, the effects of globalisation as well as 
spatial distribution, correlation, and the variability of characteristics are 
all described in the following works: Mastalerz-Kodzis (2016b), Mastalerz- 
-Kodzis and Pośpiech (2017).

6. Analysis of the Spatial Variability of Sulphur Dioxide (SO2) 
Concentration in the Air in the Silesia Region

Environmental pollution, and especially air pollution, is a serious problem 
in many cities in Poland as well as around the world. The effects of pollution 
have an impact on the lives and health of people. Various substances, many 
of which affect people’s health very negatively, are present in the air. One of 
them is sulphur dioxide.

Sulphur dioxide (SO2) is a colourless gas with a sharp, pungent and 
suffocating smell that severely irritates the respiratory tract. It is absorbed into 
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the human organism by nasal mucosa and the upper part of the respiratory 
tract. It is poisonous for animals and harmful for plants. Sulphur dioxide is 
formed as a result fossil fuels that contain sulphur being burned in industrial 
works, municipal heating plants, and individual boilers. SO2 is responsible 
for smog in big urban agglomerations. The acceptable level of hourly sulphur 
dioxide concentration is 350 µg/m3, and it may be exceeded not more than 
24  times a year. The acceptable level of average daily concentration is  
125 µg/m3, and it may be exceeded not more than 3 times a year. An hourly 
sulphur dioxide concentration of 500 µg/m3 is considered alarming.

Empirical analysis was conducted on the basis of data for Poland for the 
years 2000–2015. The data originates from more than 8,000 measurements 
per year (24 times per day) carried out by 137 measuring stations in Poland 
(source: Chief Inspectorate of Environmental Protection (GIOS)). We present 
the results below, limiting them to one of the most polluted regions in Poland 
– the region of Silesia. The main results for 17 stations in the province of 
Silesia and for the station on Babia Góra are included in Table 1. We should 
note the huge number of measurements (more than 8,300 for each station), 
which confirms the very high level of completeness of the data (94.8–99.2%). 
We clearly notice large differences between the minimum and maximum 
measurements. We can also see that the average concentration in the winter 
period is considerably higher than in the year as a whole.

Figure 2 presents selected average characteristics of environmental 
pollution due to SO2 in years 2000–2015 for a selected station in the 
province of Silesia, located nearest to the centre of the capital of Silesia – 
Katowice. The time series indicate the decreasing average values of pollution 
indicators.

 

 

 

 

 

 

0

100

200

300

400

500

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

minwinter meanmean max 

Fig. 2. Data on SO2 Concentration at the SIKatoKossut Station, 2000–2015
Source: GIOS, www.powietrze.gios.gov.pl (accessed: 20 March 2017), and the author’s own 
study.
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Figure 3 illustrates the data relating to the SIKatoKossut station. 
We  present the measurements of SO2 concentration in 2015 and the 
estimated pointwise Hölder exponents. Using the methodology described in 
the theoretical part of the article as well as the conducted research, we can 
draw the following conclusions:

– we observe much bigger values of the exponents for the period from 
April to October. This means that the 24-hour variability of the SO2 
pollution level is lower;

– lower values were recorded for the period from November to March. 
This suggests lower variability on the 24-hour pollution map and also 
positively correlates with a lower concentration of SO2 pollution (Table 1);

– higher fluctuations were recorded in November and December. We can 
assume that this is connected with differences in air temperature and the 
consequent need for heating;

– a high level of pollution was recorded in stations located near to large 
clusters of houses in the months when the air temperature was low.
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Fig. 3. Data on SO2 Concentration (µg/m3) at the SIKatoKossut Station, 2015. 
Estimated Pointwise Hölder Exponents
Source: GIOS, www.powietrze.gios.gov.pl (accessed: 20 March 2017), and the author’s own 
calculations – estimation on the basis of formula (6).
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Further, using the geographical coordinates of the measuring stations, 
we defined a matrix of Euclidean distances between the stations. According 
to its values, we calculated the coefficients of correlation. The results are 
presented in Table 2.

We can state that:
– the described methodology allows to define coefficients of correlation 

between selected environmental pollution characteristics for specified points 
in space at a specified moment in time;

– there exists a strong positive relationship between environmental 
pollution caused by SO2 between measuring stations;

– the smaller the distance between stations, the stronger the relationship. 

Table 2. Values of Correlation Coefficients with Consideration of the Memory 
Effect (0.7 < H(x, y, t) < 0.76)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1
2 0.96
3 0.92 0.89
4 0.85 0.83 0.81
5 0.76 0.74 0.73 0.69
6 0.68 0.66 0.65 0.62 0.58
7 0.46 0.45 0.44 0.43 0.41 0.39
8 0.41 0.40 0.39 0.38 0.36 0.35 0.31
9 0.99 0.95 0.92 0.85 0.76 0.67 0.46 0.41
10 1.00 0.99 0.95 0.88 0.78 0.69 0.47 0.42 1.00
11 0.67 0.65 0.64 0.62 0.58 0.54 0.39 0.35 0.67 0.69
12 0.79 0.77 0.76 0.72 0.66 0.60 0.42 0.37 0.79 0.82 0.59
13 0.92 0.89 0.86 0.80 0.72 0.64 0.44 0.39 0.91 0.95 0.64 0.75
14 1.00 1.00 1.00 1.00 0.90 0.79 0.53 0.46 1.00 1.00 0.78 0.94 1.00
15 0.66 0.64 0.63 0.60 0.57 0.53 0.39 0.34 0.65 0.67 0.53 0.58 0.63 0.77
16 1.00 1.00 1.00 1.00 0.91 0.80 0.53 0.47 1.00 1.00 0.80 0.96 1.00 1.00 0.78
17 0.69 0.35 0.24 0.43 0.33 0.25 0.31 0.32 0.21 0.20 0.24 0.15 0.06 0.13 0.06 0.51
18 0.48 0.74 0.66 0.56 0.70 0.72 0.68 0.73 0.86 0.71 0.61 0.78 0.75 0.55 0.69 1.00 0.62

Source: author’s own calculation.

In the province of Silesia, one of the most polluted regions in Poland, 
there are 17 measuring stations. In provinces where the level of pollution 
is low, the number of measuring stations is smaller. In order to identify 
the geographical location of the main sources of environmental pollution, 
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the measuring stations should be located closer in those places where the 
pollution is high.

What is more, the analysed methodology comes from a self-similarity or 
a spatial statistical self-affinity test. When analysing a region, e.g. Silesia, we 
can identify large agglomerations with the highest level of pollution. When 
considering part of a region, a segment on a flat surface, the statistical 
parameters of the whole region are the same as for the sub-region (statistical 
self-similarity). In this case, many details become clearly visible and the 
analysis exposes the sources of SO2 pollution more precisely.

7. Conclusion

Using methods deriving from the theory of stochastic processes to 
model the processes that take place in the surrounding world in a spatial 
perspective is a very useful tool as far as analyses are concerned. Connecting 
the methods of time series analysis and elements of spatial modelling is 
useful in view of the possibility to use methodology to model and analyse 
variability and correlation in space.

Currently, the use of stochastic process methods to model the structure 
and processes taking place in the surrounding world is a widely applied 
tool in theoretical and experimental studies, also in economics. Stochastic 
analysis allows us to determine the level of irregularity of the surface in 
a  quantitative way and enables us to measure the expansion intensity of 
spatial phenomena. Connecting selected techniques of time series analysis 
and elements of spatial modelling with geometric methods is useful 
considering the possibility of using methodology in economic modelling and 
in analysis of the variability and intensity of spreading in time and space.
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Abstract

Zastosowanie multiułamkowego procesu ruchu Browna w analizach 
przestrzennych

W artykule połączono metodykę stosowaną dla szeregów czasowych z elementami 
ekonometrii przestrzennej. Celem było zaprezentowanie zmodyfikowanej metody 
modelowania przestrzennego za pomocą wybranych procesów stochastycznych, a także 
aplikacja omawianej metody w naukach ekonomicznych oraz innych dziedzinach nauk. 
Hipotezę badawczą sformułowano w następujący sposób: uogólnienie na przypadek 
wielowymiarowy multiułamkowego procesu ruchu Browna jest użytecznym narzędziem 
w procesie modelowania ekonometrycznego, a także w analizie zmienności i korelacji 
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w przestrzeni. W artykule zastosowano multiułamkowy proces ruchu Browna do bada-
nia stopnia oraz zmienności zanieczyszczenia środowiska. W części teoretycznej przy-
bliżono pojęcia związane z omawianą klasą procesów stochastycznych, natomiast w czę-
ści empirycznej omówiono wybrane zastosowania omawianych metod.

Słowa kluczowe: proces stochastyczny, funkcja Höldera, modelowanie przestrzenne, 
analiza zmienności.




