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Abstract

Statistical arbitrage dynamics is driven by a stationary, autoregressive process 
known as mispricing. This process approximates the value in time of a portfolio 
weighted equally to the elements of a cointegration vector of the log-prices processes of 
related instruments. Statistical arbitrage involves taking either long or short positions 
on a  portfolio according to predictions of mispricing. This paper offers a theoretical 
analysis of cointegration testing under the conditional heteroscedasticity of the 
innovations process. Cointegration testing is used in the procedure of searching for 
the log-price processes of the related instruments that will form a statistical arbitrage 
portfolio. We also investigate dynamic characteristics of the mispricing process, which is 
a linear combination (cointegration vector elements are coefficients of it) of related log- 
-prices processes for which the (T)VECM-MGARCH model class is assumed. Under 
this model assumptions making precise predictions on mispricing process based on past 
realizations are difficult. This paper can be treated as a starting point for an empirical 
analysis of statistical arbitrage portfolio construction. Reference is made to theory 
to describe the challenges which can be faced in constructing a statistical arbitrage 
portfolio based on cointegration, in modelling the dynamics of mispricing, and in 
prediction where the innovation process is conditionally heteroscedastic.

Keywords: statistical arbitrage, cointegration, conditional heteroscedasticity, VECM- 
-MGARCH, Breitung cointegration test.
JEL Classification: C320, C580.

1. Introduction. A General Description of the Problem of Statistical 
Arbitrage 

Statistical arbitrage1 is a form of quantitative trading method which can 
be classified as a long-short, market neutral and relative pricing strategy. It is 
based on the assumption that the log-prices of related financial instruments, 

Przemysław Jaśko, Cracow University of Economics, Faculty of Management, Computational 
Systems Department, Rakowicka 27, 31-510 Kraków, Poland, e-mail: jaskop@uek.krakow.pl
1 As developed in Burgess (2000).
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such as a subgroup of index constituent stocks or a term structure of interest 
rates, are driven by a reduced number of common stochastic trends, and that 
there is an equilibrium relation between the log-prices of these instruments. 
Deviations from the levels suggested by the equilibrium relation, caused by 
idiosyncratic shocks to the log-prices of a particular instrument or subgroup 
of instruments, are subjected to reversion by arbitrageurs and the related log-
prices tend towards new levels at which the equilibrium relationship is satisfied. 

Assuming that the equilibrium relation is given by the linear function  
x' 0tb =  of related log-prices in vector xt, the process of deviations (also 

called the mispricing process) defined as xy{ }'t tb=  should be a stationary, 
autoregressive process. In this case, the vector b elements are taken as 
portfolio weights and the value of yt represents an approximate2 value 
of such a portfolio over time. A portfolio with a structure of this kind is 
known as a statistical arbitrage portfolio or a Beta portfolio. In statistical 
arbitrage theory {yt}, which approximates portfolio value, is a stationary, 
autoregressive process. When the yt value deviates from 0, it is expected 
to move towards zero, which is informed by the level of expected value 
conditional on the process past. Anyone observing positive – or negative – 
deviations can then take a short  – or long – position in a statistical arbitrage 
portfolio and make a profit by taking the opposite position when equilibrium 
is subsequently restored. 

We demonstrate in this article that using information only on the 
expected value of yt, conditional on the process past, is not sufficient 
to precisely forecast future movements of yt values. According to the 
stylized facts about financial log-return processes (and therefore of log- 
-prices as their cumulative sums), their innovation processes (stochastic 
input processes to dynamic models) are characterized by conditional 
heteroscedasticity, which is often of the MGARCH or MSV type, and 
sometimes also by unconditional heteroscedasticity. Because of this, the 
same idiosyncratic shocks (innovations) that cause deviations of  yt from 
the equilibrium level also inflate future conditional variances and covariances 
of innovations. This is in turn reflected in increased conditional variance of 
yt, which is a linear combination of log-prices as shaped by innovations. This 
increased conditional variance makes it difficult to precisely forecast future 
movements of yt values – despite the autoregressive property of yt. 

In statistical arbitrage problem, when we treat the log-prices of related 
instruments (for example the daily closing log-prices of stocks) as belonging 

2 The approximation is derived in Chan (2011).
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to the class of integrated processes (most frequently as I(1) vector processes), 
cointegration is applied to describe the equilibrium relations between 
log-prices and the VECM model (including its extensions) as a tool for 
modelling the dynamics of the log-prices vector process. This process is 
driven by the common stochastic trends, which makes it a I(1) process, and 
the I(0) temporary component shaped by an error correction mechanism and 
the short term dynamics of log-returns (the first differences of log-prices). 

This paper offers a theoretical analysis of cointegration testing  
under the conditional heteroscedasticity of the innovations process. We also  
investigate dynamic characteristics of the mispricing process, which 
is a linear combination (coefficients of this combination are equal to 
cointegration vector b elements) of related log-prices processes for which the  
(T)VECM-MGARCH model class is assumed.

This paper can be treated as a starting point for an empirical analysis  
in statistical arbitrage portfolio construction. Reference is made to theory 
to describe the challenges which can be faced in constructing a statistical 
arbitrage portfolio based on cointegration, in modelling the dynamics 
of mispricing and in prediction, under a conditionally heteroscedastic 
innovation process. 

We first present a formal definition of statistical arbitrage trading 
strategy and then consider the impact of innovations with conditional 
heteroscedasticity on cointegration based statistical arbitrage ability, and 
their influence on cointegration testing according to the frequentist approach. 

2. Statistical Arbitrage 

We define (after Jarrow et al. 2012) statistical arbitrage as a zero initial 
cost, self-financing trading strategy with a discounted cumulative trading 

profit value V n
i

n

1
=

=
^ h /DV(i) (also called investor’s wealth) for which: 

1. ,V 0 0=^ h
2. ,lim E V n 0>n

P
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^ h6 @
3. ,lim P V n 0 0<n =
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According to this definition, the expected value of discounted cumulative 
value in statistical arbitrage trading must, asymptotically, be positive. Statistical 
arbitrage strategy is different from traditional deterministic arbitrage 
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in  that it can exhibit negative discounted cumulative value – with positive 
probability in intermediate finite times – under conditions where the time- 
-averaged variance of cumulative value for infinite time tends to zero and, 
asymptotically, the probability of a negative value for a trading strategy is zero. 

The proponents of statistical arbitrage (Jarrow et al. 2012) assume that 
the dynamics of the incremental trading profits of statistical arbitrage 
(investor’s wealth) can be described by the process: 

V iD =^ h  nii + vim Zi,

~ , ~ .where orZ iiN Z MA0 1 1i i^ ^h h" ", ,
Inference, if the constructed trading strategy can be considered statistical 

arbitrage, is based on testing a conjunction of hypotheses on the parameters 
of an incremental trading profits process: : , :H H0 0> <1 2n m  and

: , .maxH 2
1 1– –>3 i m% /  An empirical series of investor’s wealth deriving 

from statistical arbitrage trading is used in the testing. 

3. Cointegration, the Heteroscedasticity of Model Innovations  
and Statistical Arbitrage

Before considering cointegrated processes it is necessary to define 
integrated n-dimensional (vector) processes. 

We call the n-dimensional process {xt} integrated of order 0 the process:  
x x{ }~ I L0t

df
t

i
i
i
t

0
+  e=

3

=
^ h / , where L is a lag operator, {et} ~ WN(0, )  

(n-dimensional white noise process) and 0.i
i 0

!
=

3

/
We call the n-dimensional process {xt} integrated of order d (d ∈Z) the 

processes:

x{ }~ I dt
df
+^ h  {Ddzt} ~ I(0) and {Dd – 1zt} I 0? ^ h.

Let us now assume n-dimensional process x{ }~ ( )I 1t  given by the 
VAR(k) model:

x x –t i t i
i 1

k
= +

=
/  et, t = 1, …, t, 

with {et} ~ iiN(0, ), represented equivalently by: 

Dxt = xt
i

k

– 1
1

1–

i +
=
/ Dxt – i + et, t = 1, …, T, 
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where I ,–i
i 1

k

n =
=
/  ,–

1
i j

j i

k
 =

= +
/  with the characteristic polynomial 

matrix A Iz( ) .z z z z1 1– – – –n i
i

i

k

1

– 1
 =

=
^ ^h h/

Additionally we assume A z( ) 0=  for z such that z 1>  or z = 1.  
The number of unit roots z = 1, is exactly n – r. For z = 1 we have 
 A(1)  =  –  = 0, implying that  has reduced rank: rk() = r < n.  
We can thus make factorization 'ab=  where dim(a) = dim(b) = n × r and 
rk(a) = rk(b) = r.

For the processes Dxt = ab'xt – 1 + i
i

k

1

1–


=
/ Dxt – i + et and b'xt (which is 

an r-dimensional process) to have initial conditions such that both will 
be I(0) processes, it is necessary and sufficient that  A' 1–a b= =

o ^ h  = 

=  'a b= = ≠ 0, where A A Id
d ,z z1 –1

1

– 1
z n i

i

k
 = ==

=
o ^ ^h h / , and a=, b= are 

respectively n n r–# ^ h matrices of orthogonal complements of a and b, with 
rank rk(a=) = rk(b=) = n – r. 

When these conditions are met, the Johansen version of the Granger 
Representation Theorem (Johansen 1995) states that I(1) process {xt} 
is cointegrated of order x, : { }~ ,CI1 1 1 1t^ ^h h and can be equivalently 
represented as (for t = 1, …, T): 

Dxt = ab'xt – 1 + i
1

– 1

i

k


=
/ Dxt – i + et,

x C C A,Lt
i

t

1
1i te e= + +

=
^ h/

where C b= = ( 'a b= =) C' ~, L I 0t
1

1
– a e= ^ ^h h and b'A = 0 (A is associated 

with the initial value). 

The column vectors from the b matrix form the basis of a cointegration 
space which is the r-dimensional subspace of Rn, where 0 < r < n and, for 
any vector b ∈ sp(b), we have b x{ ' }~ I 0t ^ h, because b C' 0= , specifically x' tb  
forms an r-dimensional I(0) process. 

Summarizing for x{ }~ ( , )CI 1 1t , we have: {xt} ∼ I(1), {Dxt} ∼ I(0),   
{yt =  b'xt} ∼  I(0), additionally { 'b= Dxt} ∼ I(0). 

Once the related log-prices have been identified, the central problem in 
statistical arbitrage is to model and forecast the deviations process. When we 
assume r = 1 (a higher cointegration rank may suggest that the chosen group 
of assets includes some mutually exclusive subgroups of related log-prices), 
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the deviations process is represented by a scalar process {yt = x' tb }, which is 
a stationary, autoregressive process. 

Unfortunately, when heteroscedastic variance is present in yt, the 
autoregressive property is not a sufficient condition for a precise directional 
forecast of yt and hence for taking profitable positions on a Beta portfolio 
based on it.

To demonstrate this, let us make further assumptions that incorporate 
stylized facts about financial log-returns by extending the VECM model 
with the iiN innovations process. 

For most financial log-returns, innovations processes {et} show 
conditional heteroscedasticity, which is usually modelled by one of the 
many MGARCH variants, and are no longer strict white noise processes. 
Innovations processes are composed of variables that are not correlated in 
time, but are not independent in time. Unconditional heteroscedasticity, 
caused for example by structural breaks that permanently increase 
the mean dispersion level from a  particular moment in time, is also 
sometimes observed. The heteroscedastic innovations referred to above are 
embraced by a group of martingale difference sequence (MDS) processes. 

Let us consider a VECM-MGARCH3 model for the log-returns of 
related stocks with a CI(1,1) cointegrated n-dimensional log-prices process, 
where r = 1 implies b composed of only one cointegrating vector. For ease 
of interpretation we assume that there are no short-term dynamics in the 
model i.e. Ci = 0, i = 1, …, k – 1.

VECM-MGARCH model (t = 1, …, T): 

Dx x' – 1t tt a eb= +                                       partVECM}
et = Ht

1/2 t

Ht = H(et – 1 e't – 1, …, Ht – 1, …)
{t} ∼  iid(0, In)

 

}
 

MGARCH part,

where H H H '1/2 1/2
t tt = ^ h  is the “square root” decomposition of Ht = 

[ ]h , 1, ,i,ij j nt= = f , representing a covariance matrix in moment t conditional 
on the past of the process, H is a matrix function representing MGARCH, 
with some previous values of '– –t j t je e  and Ht – j as arguments, {t} is an 
n-dimensional process of independent standardized variables, having for 
example a multivariate normal distribution or a multivariate t-Student 

3 So that more general statements can be made, the variant of the MGARCH model is not precisely 
specified.
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distribution with vector mean 0 and covariance In (n-dimensional unit 
matrix), but also with asymmetric counterparts of these distributions. 

The deviation process (mispricing process) for this model, with 
cointegration rank r = 1 and cointegration vector b 'n1fb b= 6 @ , is a scalar 
process {yt} given by:

x'y tt b= = ( '1 b a+ ) ' 'x – 1t tb b e+
,y yt – 1t t

yz f= +

where z = ( '1 b a+ ), x, { }~ ( , )for andCI1 1 1 1– t!z ^ h  t
yf = .' tb e

The deviations process {yt} is in fact stationary and autoregressive, but 
let us investigate its properties, such as its expected value and variance 
conditional on the past of the process. 

Let tΨ = x( , )s ts #v  be a s-algebra generated by the process {xs} up to 
moment t. 

|E yt t 1–Ψ =^ h  zyt – 1

|V y Vt – 1t Ψ =^ h ( t
yf | ) Vt – 1Ψ = (b'et| – 1tΨ =h
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The conditional variance form for yt shows that in general conditions 
{ }t

yf  is not given by a univariate GARCH model. The first component in yt 

conditional variance h ,i
i

n

ii t
2

1
b

=
/  is always positive and cumulates (with positive 

multipliers i
2b ) the conditional variances hii, t of the univariate constituents 

of et from the innovations process, thus increasing the value of |V yt t 1–Ψ^ h. 
The second component, which is twice h ,i

j ii

n

j ij t
1
b b

2=
// , can – but does not 

have to – take negative values and, in some conditions, can reduce the level 
of conditional variance of yt. The sign of the second component depends on 
the signs of parameters bi, bj and on the conditional covariances hij, t for the 
constituents of et. 

These findings confirm that, because of increased conditional variance 
|V yt t1 Ψ+^ h, information about |E yt t1 Ψ+^ h is not on its own a precise 

indicator of future yt+1 value movements. Moreover, the conditional 
distribution |t 1e + tΨ  type and parameters strongly affect the conditional 
distribution of |yt t1 Ψ+  as a linear combination of x |t t1 Ψ+  constituents. 
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If useful predictions are to be made in a case such as this, all of the information 
available on the conditional distribution of |yt t1 Ψ+  should be exploited 
rather than selected parameters only. From the conditional distribution  
of |yt t1 Ψ+  we can derive quantile forecasts or assess the probability of up or 
down movement from the current yt value. Because of the complex shape of 
the conditional distribution |yt t1 Ψ+ , which can be asymmetric, and owing 
to the complicated relations describing its parameters, there may occur 
a situation in which sgn |E y y–t t t1 Ψ+^ h6 @ gives a specific direction for future 
movement while the information on the conditional distribution of |yt t1 Ψ+  
suggests that movement in the opposite direction is more probable. Here, 
the autoregressive tendency to revert, which was expected, is dominated by 
overdispersion and statistical arbitrage cannot be realized. 

We have simulated a sample series of a length of T = 1000 simulated from 
VECM-DCC-GARCH (n = 2, r = 1 with a 2 × 1 cointegration vector  b; 
the model has no short-term dynamics) for xt, Dxt, yt = b'xt. Figure 1 shows 
scatter plot for xt = (xt1, xt2)', Figures 2 to 4 are plots of the time series 
concerned. 

x t2

xt1

(βort)

Fig. 1. Scatter Plot for , 'x xt t1 2^ h  with Marked Attractor Given by the Subspace sp(b=)
Source: author’s own research.

The one-dimensional subspace spanned by the b orthogonal complement, 
denoted by sp(b=), forms an attractor for process {xt}; as for x ct $b=) = with 
arbitrary c ≠ 0, we have x' 'y c 0t t $b b b= = =) )

=  and, for the assumed model, 
'xyt tb=  is driven towards 0. 
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Fig. 2. Simulated Log-prices x , 'x xt t t1 2= ^ h  Time Series
Source: author’s own research.
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Fig. 3. Simulated Log-returns Dxt = (Dxt1, Dxt2)' Time Series
Source: author’s own research.

The VECM-MGARCH may be too restrictive in its construction, since it 
is suggested that because of transaction costs, only higher absolute deviations 
from the equilibrium relation are corrected by arbitrageurs. An  extension 
to the VECM part of the model, known as TVECM or Threshold VECM, 
was proposed to take account of this (Balke & Fomby 1997). In this case 
TVECM assumes three regimes and one cointegrating vector, r = 1: 

 Dxt x' t
1

3
( ) ( )

– 1
( )

1

1–
m m m

m
ii

k
ba = +

= =
/ f / Dxt – i + 

t
me^ h) . I(cm – 1 < yt – 1 ≤ cm),
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where I is an indicator function and for the middle regime m = 2 we have: 
( , ]c c0 1 2! , 0(2) /a  which means there is no cointegration in the middle 

regime and x ~ ( )'y I 1t tb=  for c 1 < yt – 1 ≤ c2.

0 200
Time

400 600 800 1000

Fig. 4. Simulated Realization of Deviations (Mispricing) Process x'yt tb=
Source: author’s own research.

In this case, because of nonlinear dynamics, the model does not have the 
representation stated by the Granger Representation Theorem. 

To analyze the properties of vector processes with non-linear dynamics, 
concerning order of integration and cointegration, the definitions of 
integrated and cointegrated processes need to be extended.

The extended definition of the I(0) n-dimensional (vector) process makes 
use of the functional central limit theorem (FCLT), whose formal aspects 
are described by Davidson (1994). 

We call the n-dimensional process {xt} an I(0) process ⇔ [ , ]a 0 16 !  

and xx W: ( )aT T /
t

t

aT
d

2
1

1

1 2–" "3 
=

6 @
/ , where d symbolizes weak convergence 

(convergence in distribution), $6 @ is a floor function, W(a) is an n-dimensional 

standard Wiener process, xlim T Covx T t
t

T
1

1

– =
"3 =

c m/  is called a  long-term 

covariance matrix and x
/1 2  is its “square root” matrix. The definition of the 

processes for vector I(d) remains unchanged. 
In this extended approach, cointegration is defined without appealing 

to an explicitly specified model. In this way it can embrace models with 
different types of short-term and error-correction dynamics. 

'x
y t

t
b

=
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Let x{ }~ I 1t ^ h with respect to the extended definition. We additionally 
assume decomposition of the invertible matrix [ , ]b b b= =

u , where  
dim(b) = n × r, dim(b=) ,n n r–#= ^ h and 0 < r < n and 0'b b == . 

Process {xt} is CI(1,1) if we can decompose it into two components: x' tb =u  

= [ '
'

b

b
= ] xt = [ u

y
t

t
], for which u W ~ ( )T a I 1aT

d
2
1– " ^ h6 @  and y y 'T o 1t

t

T

t p
2

1

– =
=

^ h/ , 

where W(a) is a (n – r)-dimensional standard Wiener process. 
Here {yt = b'xt} represents a transitory component, which can also be 

generated by a nonlinear process with a short memory. In addition, b spans 
an r-dimensional cointegration space. {u x't tb= = }, on the other hand, is 
a stochastic trend component, which is “variance dominating”. This means 
that {ut} diverges at a faster rate than {yt}. 

4. Difficulties with Inference on Cointegration in the Case  
of Heteroscedastic Innovations

This paper offers a brief discussion of only the frequentist approach to 
testing cointegration under the heteroscedastic innovations of a specific type. 

Classical Johansen cointegration rank tests associated with the ,CI 1 1^ h 
process VECM model with iiN innovations, known as the maximum 
eigenvalue test (cointegration rank: : . :vsH r H r 10 1 + ) and the trace 
test (cointegration rank:  x: . : { }~vsH r H n I 0t0 1 + ^ h), under the null 
hypotheses have asymptotic distributions, which are derived with the use of  
FCLT and specified as the functionals of the standard Wiener process.

It has been shown (Cavaliere, Rahbek & Taylor 2010) that when we 
attenuate assumptions about an innovations process from iiN to one that 
belongs to the MDS class of processes, which includes conditionally and 
unconditionally heteroscedastic processes, Johansen tests will weakly 
converge to the same asymptotic distributions. 

In VECM models with heteroscedastic innovations, Johansen 
cointegration rank tests for finite-length samples are regarded as quasi-
likelihood ratio tests because they use a likelihood function for the 
VECM model with iiN innovations. These Quasi-LR tests use asymptotic 
critical values, which is reflected in moderate to high test-size distortions. 
In a simulation study of Johansen tests using innovations with an MGARCH 
type of conditional heteroscedasticity (Maki 2013), a true null hypothesis 
of no cointegration (r = 0) was more frequently rejected than the nominal 
critical level assumed. 
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To improve the performance of the Johansen Quasi-LR tests for finite- 
-length samples, a wild bootstrap procedure was suggested (Cavaliere, 
Rahbek & Taylor 2010). Unlike other bootstrap methods, such as the iid 
bootstrap (Swensen 2006), wild bootstrap makes it possible to retain the 
heteroscedasticity structure of the original series. In a single wild bootstrap 
replication, Quasi-Maximum Likelihood (QML) estimated VECM model 
errors { }t t

T
1e =  are multiplicatively distorted by a univariate4 iid(0, 1) process 

{ }t t
T
1~ =  and a new series of Dxtb is constructed using D +x x' b

t
b

– 1tab= t t

i
i

k

1
+

=
/ Dx ,b

t
b

– 1t e+  t = 1, …, T, where t
be = t $~ te  with { } ~ ( , ),iid 0 1t t

T
1~ =   

Dx x x x, , , 'b
k0 0 1 1– –f= +^ h . 

A wild bootstrap p-value of a Johansen quasi-LR test with a null 
hypothesis of cointegration rank r, for B replications of wild bootstrap and 

sample length T, is calculated by: p B I Q Q>, ,r T
b

B

r b r
1

1

–=
=

u ^ h/ , where I is an 

indicator function, Qr, b is a quasi-LR test value calculated for a VECM 
model estimated using series Dxtb constructed in a b-th replication of the 
wild bootstrap procedure, and Qr is a quasi-LR test value calculated for 
a VECM model estimated using the genuine series Dxt. 

Simulations (Cavaliere, Rahbek & Taylor 2008, 2010) under the 
null hypothesis of no cointegration and MGARCH heteroscedasticity 
innovations or unconditional heteroscedasticity innovations, have shown 
a reduction in test size distortion for the presented wild bootstrap variant in 
comparison to tests using asymptotic critical values for quasi-LR Johansen 
rank tests. These bootstrap tests are associated with a VECM model that 
assumes linear error-correction and short-term dynamics.

Some cointegration tests assume in their alternative hypotheses models 
with a specific type of nonlinear error-correction and short-term dynamics, 
but according to simulations they suffer from unacceptably large test-size 
distortions under MGARCH heteroscedastic innovations (Maki 2013). It is 
of more benefit in the statistical arbitrage problem to use cointegration tests 
that do not require advance specification of the model dynamics.

The extended definitions of integrated and cointegrated processes 
presented earlier in this paper can be referred to the Breitung cointegration 
rank test (Breitung 2002), which is asymptotically free of the nuisance 
parameter of long-term covariance, influenced by short-term dynamics 

4 Most frequently for process variables we assume Rademacher, standard normal or some discrete 
asymmetric distribution with andE E0 1t t

2
~ ~= =^ ^h h .
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(linear/nonlinear, number of lags included) and by potential conditional 
heteroscedasticity and parameters related to them. The Breitung 
cointegration test can be conducted without advance specification of 
a model. This is a very important aspect because in the statistical arbitrage 
problem it is not known in advance which assets have related log-prices 
processes. Specifying log-price models for numerous subgroups from an 
adopted universe of assets would be problematic. Instead, subgroups of 
cointegrated log-prices need to be identified by automatic searching, and 
Breitung test p-values (with a  null hypothesis of no cointegration) can be 
applied to measure the strength of the relationships. This is a combinatorial 
optimization problem, which can be solved using a genetic algorithm with 
binary coding of solutions (with 1 when the asset log-price is included in the 
relationship) and a fitness function defined, for example, as 1 – p-value of 
a test with a null hypothesis of no cointegration. 

There follows a short discussion of the Breitung cointegration rank test. 

Let E x x'tT t
t

T

1
=

=
/  and F X X'tT t

t

T

1
=

=
/ , where X xt i

i

t

1
=

=
/ . The Breitung 

cointegration test incorporates the solution of a generalized eigenvalue 
problem:

F E 0–T Tm = . 

For eigenvalue mj  ( j = 1, …, n) we have:

v F v
v E v

'
'

,j
j T j

j T j
m =  

so when vj belongs to sp(b=) we have5: pv E v' ,O Tj T j
2= ^ h   pv F v' O Tj T j
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The Breitung test considers hypothesis H0: n – r common stochastic 

trends (r cointegration rank) against H1: < n – r common stochastic trends  
(> r cointegration rank) and employs statistic: 
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n r
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–

–
Λ =

=
/ mj, 

where n1 2 f# # #m m m  are eigenvalues from the solution of a generalized 
eigenproblem.

Under the null hypothesis the test statistic has an asymptotic distribution 
derived using FCLT, which is a trace of a specified functional of (n – r)- 
-dimensional  standard Wiener process defined on [0, 1]. This distribution  

5 Derivations can be found in Breitung (2002).
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is free of the nuisance parameter of long-term covariance. Under the 
alternative hypothesis, test statistic tends asymptotically to infinity, which 
means that the test has a right-side critical area.

According to the results of simulations (Maki 2013), the use of the Breitung 
cointegration test is recommended for samples of finite length, when the 
innovations are characterized by MGARCH conditional heteroscedasticity 
and a null hypothesis assumes no cointegration (the  Breitung test has 
minimal size distortion among considered tests). 

It must not be forgotten that when conditional or unconditional 
heteroscedasticity of innovations exerts a strong influence, the cointegration 
results returned by the tests can be spurious.

5. Conclusion

Cointegration between the log-prices of related assets is a necessary, but 
not a sufficient condition for the statistical arbitrage opportunity to hold. 
Idiosyncratic shocks that cause deviations from the equilibrium relation also 
increase the dispersion of the mispricing process. In this way the autoregressive 
tendency of the mispricing process (whose values approximate the value of the 
statistical arbitrage portfolio over time) can be masked by inflated conditional 
variance. Future movements of the mispricing process can be hard to predict 
and also opposite to those suggested by the expected value conditional on 
the process past. Another difficulty in implementing a  strategy of statistical 
arbitrage under heteroscedastic innovations is the increased chance (with 
respect to the critical level assumed in the test) of finding false log-price 
relations in many types of tests with a null hypothesis of no cointegration.
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Abstract

Arbitraż statystyczny – ujęcie krytyczne

Rozpatrywana w ramach strategii arbitrażu statystycznego dynamika procesu 
odchyleń od równowagi (mispricing process) ma charakter autoregresyjnego procesu sta-
cjonarnego. Proces ten reprezentuje w przybliżeniu wartość w czasie portfela z wagami 
odpowiadającymi elementom wektora kointegracyjnego dla procesów logarytmów cen 
powiązanych instrumentów. Strategia polega na zajmowaniu długich bądź krótkich 
pozycji na wspomnianym portfelu na podstawie prognoz dotyczących kształtowania się 
procesu odchyleń od równowagi. W artykule przeprowadzono na gruncie teoretycznym 
analizę dotyczącą testowania kointegracji w przypadku warunkowej heteroskedastycz-
ności procesów innowacji. Testy kointegracji wykorzystywane są w procedurze poszu-
kiwania powiązanych procesów logarytmów cen instrumentów, które będą tworzyć 
portfel arbitrażu statystycznego. W pracy rozważano także charakter dynamiki procesu 
odchyleń od równowagi, będącego liniową kombinacją (elementy wektora kointegracji 
są jej parametrami) powiązanych procesów logarytmów cen, dla których zakłada się, 
że są  generowane przez klasę modeli (T)VECM-GARCH. Przy takich założeniach 
dotyczących modelu procesów stawianie precyzyjnych prognoz dotyczących dynamiki 
procesu odchyleń od równowagi na podstawie przeszłych realizacji jest utrudnione. 
Praca może być punktem wyjścia do analiz empirycznych dotyczących konstrukcji port-
fela arbitrażu statystycznego. Wykorzystując rozważania teoretyczne, wskazuje się pro-
blemy, które można napotkać w badaniach empirycznych dotyczących konstrukcji opar-
tej na kointegracji strategii arbitrażu statystycznego oraz modelowania i prognozowania 
procesu odchyleń od równowagi w przypadku warunkowej heteroskedastyczności pro-
cesu innowacji.

Słowa kluczowe: arbitraż statystyczny, kointegracja, warunkowa heteroskedastyczność, 
VECM-MGARCH, test kointegracji Breitunga.


