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Abstract

Financial time series show many characteristic properties including the phenomenon 
of clustering of variance, fat-tail distribution, and negative correlation between the rates 
of return and the volatility of their variance. These facts often render standard methods 
of parameter estimation and forecasting ineffective. An important feature of financial 
time series is that they can be characterized by long samples. This causes the models 
used for their estimation to potentially be more extensive. 

The aim of the article is to use wavelets to approximate and predict a series. 
The  article describes the author’s model for financial time forecasting and provides 
basic information about wavelets necessary for proper understanding of the proposed 
wavelet algorithm. The algorithm uses a Daubechies wavelet.
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JEL Classification: C10, C20, C40.

1. Wavelet Transform

The wavelet transform is the result of the transformation of the operand 
(the operator’s argument, i.e. the function of a given space in itself) under 
the influence of the operator. Exemplary transforms include the Laplace 
transform, the Fourier transform, the wavelet transform, the Burrows- 
-Wheeler transform and the Hilbert transform. Wavelet transform is used 
in this article. There are two ways to determine wavelet transform. Most 
transforms can only be done using a formula. For example, the Laplace 
transform of a time function v(t) is calculated by the formula:

Monika Hadaś-Dyduch, University of Economics in Katowice, Faculty of Economics, Depart-
ment of Statistical and Mathematical Methods in Economics, 1 Maja 50, 40-287 Katowice, Poland, 
e-mail: monika.dyduch@ue.katowice.pl



Monika Hadaś-Dyduch10

 
–3

3+

( ) ( ) .V s v t e dtst–= #  (1)

There is a similar formula for the wavelet transform and Fourier 
transform. The most important difference between Fourier transform 
and Laplace transform is described by Euler (1744): “While the Fourier 
transform of a function is a complex function of a real variable (frequency), 
the Laplace transform of a  function is a  complex function of a  complex 
variable. Laplace transforms are usually restricted to functions of t with t > 0. 
A consequence of this restriction is that the Laplace transform of a function 
is a holomorphic function of the variable  s. Unlike the Fourier transform, 
the Laplace transform of a distribution is generally a well-behaved function. 
Also techniques of complex variables can be used directly to study Laplace 
transforms. As a holomorphic function, the Laplace transform has a power 
series representation. This power series expresses a function as a linear 
superposition of moments of the function. This perspective has applications 
in probability theory. The Laplace transform is invertible on a  large class 
of functions. The inverse Laplace transform takes a function of a complex 
variable s (often frequency) and yields a function of a real variable t (time). 
Given a simple mathematical or functional description of an input or output 
to a system, the Laplace transform provides an alternative functional 
description that often simplifies the process of analyzing the behavior of the 
system, or in synthesizing a new system based on a set of specifications. So, 
for example, Laplace transformation from the time domain to the frequency 
domain transforms differential equations into algebraic equations and 
convolution into multiplication. It has many applications in the sciences and 
technology” (Korn & Korn 1967). More interesting information about the 
Fourier transform and the Laplace transform can be found, inter alia, in: 
(Phillips, Parr & Riskin 1995, Hilger 1999, Carlsson & Wittsten 2017).

As a transformation, the wavelet transform is similar to the Fourier. Both 
are based on the use of dot product operations of the test signal and the 
other part, which is known as the “kernel of the transformation”. The main 
difference between them is the kernel. The use of wavelets as the nucleus 
of the transformation makes it possible to present each continuous function 
with a certain accuracy expressed by wavelet coefficients.

In the Fourier transform the domain contains time functions and the 
co-domain contains frequency functions. However, the wavelet transform 
allows for the transition from a time-value system to a time-scale (frequency) 
system, which makes it possible to analyze the frequency change in the time 
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domain. (It should be explained here that moving from the time-value system 
to the frequency-value system, we lose information about when a given event 
occurred). The formula for the Fourier transform is given by:
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There is one form of the Fourier transform for each category:
– continuous-time Fourier transform,
– continuous-time Fourier series,
– discrete-time Fourier transform,
The fast Fourier transform is a fast version of the discrete-time power 

signal and does not apply to any of the other transforms. The discrete-time 
power signal is defined by:
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The above equation is really an N equation, one for each value of k (Mix  
& Olejniczak 2003, p. 19):
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Again, the main difference between wavelet transform and Fourier 
transform is the kernel. For the kernel, Fourier transformation uses 
a  sinusoidal function (i.e. periodic functions representing one frequency). 
However, in wavelet transform, the kernel is a wavelet, a special feature 
limited to certain requirements which must be met to be able to use it for the 
so-called multi-resolution analysis (e.g. it must have scaling function). There 
is an infinite number of such functions, and thus also an infinite number of 
wavelet transformations.

In the article I attempt to approximate a series of wavelets. Wavelets 
are basic functions for the wavelet transform (see Hadaś-Dyduch 2015, 
2016a, 2016b, Hadaś-Dyduch, Balcerzak & Pietrzak 2016). As previously 
mentioned, the wavelet transform is a transformation similar to Fourier 
transform, thus “(...) wavelet coefficients can be calculated in the same way as 
Fourier coefficients, by using basis functions in an inner product calculation. 
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However, wavelets allow us to use an alternative scheme involving samples of 
the waveform supplied to a filter-down sample operation. For this, we must 
have an appropriate filter. Different wavelets are associated with different 
filters” (Mix & Olejniczak 2003, p. 24). 

2.  The Haar Wavelet

The Haar transform is one of several wavelet transforms that can be 
calculated with a formula. “In mathematics, the Haar wavelet is a sequence 
of rescaled «square-shaped» functions which together form a wavelet 
family or basis. Wavelet analysis is similar to Fourier analysis in that it 
allows a  target function over an interval to be represented in terms of an 
orthonormal basis. The Haar sequence is now recognised as the first known 
wavelet basis and extensively used as a teaching example. (…) The Haar 
wavelet is also the simplest possible wavelet. The technical disadvantage of 
the Haar is that it is not continuous, and therefore not differentiable. This 
property can, however, be an advantage for the analysis of signals with 
sudden transitions, such as monitoring of tool failure in machines” (Lee & 
Tarng 1999, p. 241). The formula of Haar transform is given by:
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The function f00 is called the scaling function, and the functions ψkj are 
called wavelets. The wavelet function corresponds to a bandpass filter (or 
a highpass filter). In contrast, the scaling function corresponds to a low-pass 
filter for approximation (averaging, smoothing the waveform). The scaling 
function is always assigned to one wavelet function (generating a family of 
scaling functions as for wavelet functions based on translation and scale).

“There are many wavelet basic functions other than Haar functions, 
and there is one wavelet transform for each set of basic functions. This is 
similar to the Fourier transforms, where there are four forms of the Fourier 
transform, but not similar in that there is a vast array of wavelet basic 
functions. Another important difference is in the way the coefficients for the 
wavelet transform are calculated. Most wavelet coefficients are calculated 
in a different way, using multirate sampling theory. There it is necessary 
to know only the filter coefficients. This method does not use the basic 
function” (Mix & Olejniczak 2003, p. 24). 
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Proposed in 1910 by the Hungarian mathematician A. Haar, the Haar 
transform is the simplest of the wavelet transforms, and one of the oldest 
transform functions. The Haar wavelet (Figure 1) is also the simplest 
possible wavelet. 

Fig. 1. Haar Wavelet
Source: the author’s own elaboration.

Fig. 2. Daubechies Wavelet
Source: the author’s own elaboration.
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Apart from the Haar wavelet, there are many other types of waves: 
Daubechies wavelets, Cohen-Daubechies-Feauveau wavelet, Mathieu 
wavelet, Legendre wavelet, Villasenor wavelet, to name just a few.

A special case of the Daubechies wavelet (Figure 2), the Haar wavelet, 
is also known as Db1. With each wavelet type of this class, there is a scaling 
function (called the father wavelet) which generates an orthogonal 
multiresolution analysis (see Daubechies 1992). 

3. Model Specification

3.1. General Remarks

The aim of this article is to approximate and predict series with 
wavelets. It draws into one algorithm econometric methods with wavelet 
analysis. Econometric methods and wavelet transform are combined for the 
construction of a model that predicts a time series.

The choice of econometric methods for prediction is wide. There are two 
groups of econometric methods involved: static spatial information system 
and dynamic system of spatial information. 

A static spatial information system presents the relationship between 
the signal input and output circuit. The relationship is usually constant, 
but depends on the time. Examining time characteristics in the context 
of the static does not make sense, because they do not say anything about 
a system in which there are no state variables. By contrast, a dynamic spatial 
information system accounts for the position of the object and its inception. 
This makes it possible to view the changes over time in the maps generated 
by the system. A geographic information system acquires, processes and 
shares data containing spatial information and accompanying descriptive 
information about the objects featured in the portion of the space covered 
by the system’s operation.

From among the available and well-know econometric methods, for this 
article I chose only one group – adaptive methods. The difference between 
conventional methods and methods of adaptation include:

1) classical methods: 
– stimulus is often far from the threshold,
– stimulus values to be presented are fixed before the experiment;
2) adaptive methods: 
– modifications of the method of constant stimuli and method of limits, 
– stimulus values to be presented depend critically on the responses that 

preceded them.

,
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3.2. Algorithm Specification  

My algorithm can be presented in the following main stages:
1. A one-dimensional time series is divided into smaller, equinumerous 

units, keeping the chronology of time.
2. For each series resulting from the division series in the base point 1, we 

determine the coefficients of wavelet for the following equations:
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where L is filter length, and: 
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Signal processing using wavelet transform uses filters. Filter h is called 
a low-pass filter, which is defined as: 
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3. Determine the function approximating each series according to the 
formula: 
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4. Construction of models segmented according to the initial division of 
the unit series of the base.

5. Determination of theoretical values arising from the specific functions 
and series unit.



Monika Hadaś-Dyduch16

6. The calculation of the final value of the theoretical forecasted variable 
according to the formula:
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where:
f tij
t ^ h is the final theoretical value for period or moment t,
ki is the number of “segments” of theoretical variable values for the 

period or the moment t.
7. The solution to the problem:
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on the assumption  , .0 1!α
8. Prediction errors.
The article is used to approximate Daubechies wavelet. In contrast 

to Haar’s simple-step wavelets, which exhibit jump discontinuities, 
Daubechies wavelets are continuous. As a consequence of their continuity, 
Daubechies wavelets approximate continuous signal more accurately with 
fewer wavelets than do Harr’s wavelets, but require intricate algorithms 
based upon a  sophisticated theory. The Daubechies wavelets are a family 
of orthogonal wavelets characterised by the maximal number of vanishing 
moments for some given support. With each wavelet type of this class, there 
is a scaling function which generates an orthogonal multiresolution analysis. 
Furthermore, each Daubechies wavelet is compactly supported. The 
Daubechies wavelets are neither symmetric nor antisymmetric around any 
axis, except for Db1, which is in fact the Haar wavelet. It is not possible to 
satisfy symmetry conditions given all the other properties of the Daubechies 
wavelets (see Daubechies 1992).

 The Daubechies wavelets begin by approximating the samples by the 
scaling function of the multiples of shifted basic building blocks:

 f ru^ h = a–2f(r + 2) + a–1f(r + 1) + a0f(r) + … + a2n–1f(r – [2n – 1]), (19)

where:
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3 3
4
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4

1 32 2 1 2 2– – – – –ψ φ φ φ φ= + + + ++ +   (20)

 for or ,( ) r rr 0 1 2–< >ψ =  (21)
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 Shifts ϕ(r – l) or ϕ(r) by integers l < –2 or l > 2n – 1 equal zero where  
0 ≤ r ≤ 2n, and consequently do not affect the approximation of ft .

Here are the following steps to find approximation (see Mix & Olejniczak 
2003):

1. Start at the beginning of the waveform and compare to wavelet by 
correlation.

2. Shift the wavelet to the right and repeat step 1. Do this until you have 
covered the entire signal.

3. Scale the wavelet and repeat steps 1 and 2.
4. Repeat steps 1 through 3 for all scales. 
By a combination ft  of shifted building blocks ϕ and wavelets ψ, 

Daubechies wavelet can approximate a function f, which may represent any 
signal. A simple and common choice of the coefficient ak consists in setting, 
for each k ∈ {0, …, 2n – 1}, ak := sk, the corresponding approximation (see 
Yves 1999):

 f s
k

k
0

2 1–n

=
=

u / ϕ(r – k) (26)

nearly interpolates f at the sample points sk = f(k). 

4. Data to Be Supplied to the Algorithm

The research was based on a series of financial exchange rates established 
by the National Bank of Poland. Quotations of the value of three currencies’ 
(Czech crown, Romanian leu and euro) were from the period 1st January 
2000 to 31st May 2016. As Figures 3, 4 and 5 show, the exchange rates varied 
widely in the period considered.
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Fig. 3. Chart for the Czech Crown in the Period 2000-01-01 to 2016-05-31
Source: http://www.money.pl/pieniadze/nbparch/srednie/. Accessed: 1 June 2016.

Fig. 4. Chart for the Romanian Leu in the Period 2000-01-01 to 2016-05-31
Source: http://www.money.pl/pieniadze/nbparch/srednie/. Accessed: 1 June 2016.

Fig. 5. Chart for the Euro in the Period 2000-01-01 to 2016-05-31
Source: http://www.money.pl/pieniadze/nbparch/srednie/. Accessed: 1 June 2016.
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5. Results and Discussion

Prediction series for one period forward using wavelets provided fairly 
good results, which is best illustrated by the results quoted below: The 
RSME error was 0.98% for the Czech crown, 0.87% for the Romanian leu 
and 0.79% for the euro. 

The value of the prediction error depends on many factors, among them 
the method used to expand the series input data to calculate the wavelet 
coefficients. In the results cited above, the polynomial method is:

 p(r) = p0 + p1(r – [2n – 1]) + p2(r – [2n – 1])(r – [2n]) + 
(27)

+ p3(r – [2n – 1])(r – [2n])(r – [2n + 1 – 1]).

For comparison, Table 1 shows the results obtained by using other 
methods. The following methods (assuming that the initial series has the 
form: p0, p1, p2, …, p2n – 2, p2n – 1): 

– method 1:

 
, , , , , , , , , , , , , , ,

extension series extension

p p p p p0 0 0 0 0 0 0 00 1 2 2 2 2 1– –n ng g g1 2 3444 44 1 2 34444444 4444444 1 2 3444 44 , (28)

– method 2:

 
, , , , , , , , , , ,

extensionextension series

p p p p p p p p p2 1 0 0 1 2 2 2 2 1 2 1 0– – – –n n n ng g g
1 2 3444 444 1 2 34444444 4444444 1 2 3444 444 , (29)

– method 3:

 
, , , , , , , , , , , , , , , , ,

extension series extension

p p p p p p p p p p p p p p p0 1 2 2 2 2 1 0 1 2 2 2 2 1 0 1 2 2 2 2 1– – – – – –n n n n n ng g g
1 2 34444444 4444444 1 2 34444444 4444444 1 2 34444444 4444444  , (30)

– method 4:

 
extension

, , , , , , , , , ,
sseries extension hort

p p p p p p p p p0 1 2 2 2 2 1 2 1 0 0 1– – –n n ng g
1 2 34444444 4444444 1 2 3444 444 = . (31)

The need to extend the series input data to determine the wavelet 
coefficients appears in the case of filters. Length L is greater than 2. 
This follows from the fact that the calculation of the wavelet coefficients of 
expansion for the last element of the finite signal filter should, in theory, go 
beyond the signal. However, this did not occur.

Depending on the method used to extend the series, various prediction 
errors can be produced. 
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Table 1. Results

Currency
The method of extending the series

I II III IV Polynomial
Czech crown 2.21% 2.10% 1.75% 1.61% 0.98%
Romanian leu 2.51% 2.25% 1.84% 1.31% 0.87%
Euro 3.1% 2.95% 2.01% 1.11% 0.79%

Source: the author’s own calculations.

For this study I have used Daubechies wavelet. The study I have described 
in this article could be used as an introduction to further research, with 
subsequent algorithms being built upon the ones reported here. Innovative 
algorithms will be extended by different algorithms, including those 
presented in (Biernacki 2007, 2009). Other analyses of wavelet analysis are 
presented, among others, in (Hadaś-Dyduch 2015, 2016b, 2016c), which also 
presents comparative analyses and interesting conclusions.

7. Conclusions

The article has described the series prediction and approximation 
using wavelet. The research was based on Daubechies wavelet. Daubechies 
wavelets, based on the work of I. Daubechies, are a family of orthogonal 
wavelets defining a discrete wavelet transform and characterized by 
a  maximal number of vanishing moments for some given support. While 
Daubechies wavelets were used for this study, other wavelets including the 
Meyer, Morlet, Haar or “Mexican hat” can all be used. Wavelet analyses 
must have finite energy and an average value of zero. As a result, they take 
the form of short-term oscillations.

This article has not compared the results with other prediction models, 
because the purpose of the study was not to evaluate and select the 
best model prediction, but to present my own model for prediction and 
presentation approximation of financial time series using wavelets.
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Abstract

Aproksymacja szeregów czasowych z falkami

Finansowe szeregi czasowe wykazują charakterystyczne własności. Wśród nich 
można wymienić m.in.: występowanie zjawiska grupowania wariancji, leptokurtyczność 
rozkładów stóp zwrotu (tzw. grube ogony rozkładu) oraz ujemną korelację pomiędzy 
stopami zwrotu a zmiennością ich wariancji. Zjawiska te powodują, że w  wielu przy-
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padkach stosowanie standardowych metod estymacji parametrów i prognozowania nie 
przynosi zadowalających rezultatów. Ważną cechą finansowych szeregów czasowych jest 
fakt, że szeregi finansowe charakteryzują się długimi próbkami, co powoduje, że stoso-
wane do ich estymacji modele mogą być bardziej rozbudowane.

Celem artykułu jest aproksymacja i predykcja szeregów finansowych z falkami 
z  uwzględnieniem tzw. efektów brzegowych. W artykule opisano autorski model pro-
gnozowania finansowych szeregów czasowych oraz przedstawiono podstawowe infor-
macje o falkach niezbędne do właściwego zrozumienia proponowanego algorytmu fal-
kowego. W autorskim algorytmie wykorzystano falkę Daubechies. 

Słowa kluczowe: predykcja, falki, transformata falkowa, aproksymacja.


